
This work is under review at Usenix Annual Technical Conference, 2007 (Not for distribution)

- 1 -

Summary Hash History for Optimistic Replication
Abstract

The unprecedented growth of the world’s first non-profit, open-source encyclopedia has put considerable stress on the
Wikipedia foundation, which is constantly looking for donations to support its rising infrastructure and hosting costs
while maintaining adequate quality of service. That the public-owned content depends on a single organization’s finan-
cial fate is a major concern to many. We propose using optimistic replication to ensure that the encyclopedia content is
preserved at multiple sites managed by different organizations. Replicating the Wikipedia database requires not only an
efficient update exchange protocol but also a mechanism to identify the origin of update pollution or “anonymous slan-
der” as it is frequently referred to by Wikipedia users. In order to meet these challenges effectively, we introduce the
Summary Hash History (SHH) approach. In this approach, each site maintains a tamper-evident update history to
mitigate security challenges and to readily determine the exact set of updates to be transferred during peer-to-peer
reconciliation between sites. We first implemented Basic-SHH which confirmed our intuition that SHH can be used for
both the tamper-evident history and the efficient update exchange mechanism. However, our evaluations revealed that
Basic-SHH is unable to guarantee convergence among replicas in scenarios involving concurrent updates. Thus, we
developed a variant called Associative-SHH that overcomes Basic-SHH’s limitations by not only providing eventual
convergence but also enabling convergence of concurrent updates across partitioned networks.

1. Introduction
Wikipedia, the world’s first non-profit, open-source en-
cyclopedia, has witnessed unprecedented growth in its
relatively short five year existence. As of September
2006, Wikipedia contained over 2,550,000 unique arti-
cles with more than 1 million in the English language
alone [WK06]. Understandably, this rapid growth has put
considerable stress on the Wikipedia foundation, which
is constantly looking for donations to support its rising
infrastructure and hosting costs while maintaining ade-
quate quality of service of Wikipedia content. Users are
concerned about whether the public owned content can
be safely guarded if only one organization supports it.

We consider utilizing optimistic replication to col-
laboratively host the public content among large organi-
zations such as public universities and libraries. Optimis-
tic replication allows data to be replicated at various
points (i.e., replicas) in the network [Ki92,Ra98,Sa05].
This would ensure that the encyclopedia content is acces-
sible at multiple organizations, eliminating the current
dependency on a single organization. Such a decentral-
ized Wikipedia can also support its users with better ser-
vice, given that optimistic replication is a proven tech-
nology to provide high data availability and improved
performance more effectively than a centralized server
[Ka88,Ki92,Mu95,Ra98,Sa00,Sa05,Ku00].

To permit efficient read and write operations, as well
as to maximize content availability, optimistically repli-
cated systems allow users to access any individual site.
An update to one replica needs to be propagated to the
other replicas using pair-wise exchanges, and concurrent
updates need to be identified and resolved during this
reconciliation process to ensure a consistent view across
replicas. Notably, in order to bring consistency to the
replicas, such update exchanges require an efficient up-

date propagation mechanism that does not overload the
network. Given that network bandwidth is still consid-
ered an expensive resource compared to disk and CPU
resources, network efficiency has been one of the pri-
mary focuses of previous approaches to optimistic repli-
cation.

In a peer edited distributed application like Wikipe-
dia, additional concerns arise: (i) a misbehaving (or per-
haps misinformed) users can pollute the shared content
by introducing false information – commonly referred to
as “anonymous slander”[Se06]. (ii) Moreover, a mali-
cious replica site can easily falsify the causal ordering
between updates, propagate incorrect updates to replicas,
and even halt the propagation of valid updates [Me87,
Sc94, Sm94, Sp99], thereby preventing replicas from
converging on consistent, correct information – update
reordering/dropping attack.

In order to mitigate such security challenges, each site
must maintain or have access to a tamper-evident update
history [Ma02, Sp99]. Such a history contains a com-
plete record of the updates that have been applied to the
replicated content along with the causal relationships
between such updates and is constructed such that any
modification of the previous update history will be de-
tected at other replica sites. This ensures that (i) the mis-
behaving users (e.g., source of article slander and pollu-
tion) can be made accountable. And the tamper-evident
history can guarantee the undo of the article pollution
into correct previous article. Also, (ii) the misbehaving
sites (e.g., source of reordering/dropping attack) can be
detected through post-inspection of previous up-
date/merge history.

Our solution to such challenges is an interesting ap-
proach to optimistic replication based on each site main-
taining a Summary Hash History (SHH) that addresses
these requirements for (i) efficient update propagation

This work is under review at Usenix Annual Technical Conference, 2007 (Not for distribution)

- 2 -

and (ii) tamper-evident update histories at the cost of
maintaining a tamper-evident update history. With previ-
ous approach, version vector is used to provide efficient
update propagation by figuring out exact set of deltas to
be propagated, and a separate tamper-evident update his-
tory to ensure the correct undo and the accountability of
the participants.

In our proposed SHH, version vector is not needed,
freeing from the overhead of version vector maintenance.
SHH uses a causal history approach [Sc94] as a decen-
tralized ordering mechanism, where each site keeps a
record of the updates that it has created and incorporated
from other sites in the form of a secure version tree with
SHs as version identifiers. Because it utilizes this unique
summary hash identifier, SHH represents a tamper-
evident update history that ensures the verifiability of
updates and enables the system to protect against mali-
cious compromise and faulty ordering through an
undo/time-travel mechanism. Additionally, the SHH
scheme supports efficient update propagation. During
reconciliation, two sites exchange their SHHs, from
which each can extract the minimal set of updates that
need to be transmitted over the network to bring the sites
into a mutually consistent state.

The effectiveness of SHH-based replication was
tested by implementing S-Sync, a directory synchroniza-
tion tool to share and synchronize files/folders between
multiple distributed sites. With this experience we then
built a replicated Wikipedia application (RepliWiki),
using S-Sync as a pluggable framework. Each RepliWiki
site periodically publishes article updates, which are ag-
gregated into a file in the shared directory. These files are
propagated to other RepliWiki sites through S-Sync pro-
tocol. RepliWiki is currently deployed on PlanetLab
nodes and exists to demonstrate the usefulness of the

SHH technique in a real world application.
However, we found two practical issues in building

scalable, replicated systems using SHHs. First, the size of
an SHH can grow unbounded, which can overload the
network during reconciliation. Second, our initial imple-
mentation of S-Sync exhibited convergence problems
when reconciling concurrent updates.

To address this first issue, we explored protocol
variations based on SHH, in addition to using a well-
known decentralized pruning technique. Instead of send-
ing the entire SHH or only the latest SH, we found send-
ing up to ‘k’ entries from the SHH can be beneficial and
efficient, since it may cost the same amount to send 1 SH
entry as to send 100 SH entries.

The second, perhaps more serious, problem arises be-
cause our initial implementation, called B-SHH, assigned
a new summary hash identifier to the result of the merge-
of SHHs, when two sites reconcile. Our analyses actually
show that this can derail the whole reconciliation process
by creating new versions in the SHH that are continually
propagated to other replicas. Consequently, eventual con-
vergence is not guaranteed in B-SHH. Our experiments
not only show the detrimental affects of such entries on
the version tree, they also demonstrate that B-SHH pro-
duces false conflicts when three or more concurrent up-
dates are merged. For instance, reconciliation between
randomly chosen sites leads to an abundance of vacuous
(i.e. non-data-transferring) reconciliations, in which only
summary hashes, not data content, are transferred during
the reconciliation process.

These observations guided the design of our follow
up SHH construction mechanism referred to as Associa-
tive-SHH (or A-SHH). In A-SHH, a merge identifier is a
set of summary hashes of all previous revisions on which
the merge is based, instead of a newly generated hash as
in B-SHH. Further analysis has shown that A-SHH not
only converges faster than B-SHH but also provides con-
vergence of concurrent updates even across partitioned
networks as long as each partition received the same set
of updates before the network partitioned. Thus, A-SHH
is the ideal choice for large distributed applications such
as RepliWiki.

The rest of our paper is organized as follows. Section
2 introduces S-Sync and B-SHH. Then Section 3 presents
the Associative-SHH including the problems in B-SHH.
The implementation of S-Sync and RepliWiki are dis-
cussed in Section 4 followed by the evaluation of SHH
design and results of our PlanetLab experiment in Sec-
tion 5. Section 6 discusses the related work and we con-
clude in Section 7.

2. S-Sync with Basic-SHH
We first show how B-SHH version trees are constructed
and used in S-Sync, a directory synchronization tool to
share and synchronize files and folders among distributed

Site-X Site-Y Site-Z

S0=“dir name”
V0

V1 V2

S2=h(S0 || H2)

V3

S0

S1 S2

S4 S4=h(S2 || S1 || H4)

S0

S1 S2

S4

S5=h(S4 || S3 || H5)

S3

S5Basic-SHH

C1 C2 C3

time
t0

t1

t2

V0 V052C 52C 52C

DD1 048

410

66A

V4

V5

S3=h(S0 || H3)
S1=h(S0 || H1)

F78

t3

Site-X Site-Y Site-Z

S0=“dir name”
V0

V1 V2

S2=h(S0 || H2)

V3

S0

S1 S2

S4 S4=h(S2 || S1 || H4)

S0

S1 S2

S4

S5=h(S4 || S3 || H5)

S3

S5Basic-SHH

C1 C2 C3

time
t0

t1

t2

V0 V052C 52C 52C

DD1 048

410

66A

V4

V5

S3=h(S0 || H3)
S1=h(S0 || H1)

F78

t3

Figure 1: B-SHH Example. At time t1, Site X, Y and Z
created new states S1, S2 and S3. At time t2, Site X pulled
S2 (i.e., delta(S0,S2)) from Site Y and deterministically
merges the two states: S1 and S2 , creating S4 state.

This work is under review at Usenix Annual Technical Conference, 2007 (Not for distribution)

- 3 -

sites. Our implementation of S-Sync furnishes the under-
lying update transfer framework used in RepliWiki. Each
RepliWiki site periodically publishes updates to its lo-
cally stored articles, which are aggregated into files in the
shared directory. These files are exchanged with other
RepliWiki sites through S-Sync.

S-Sync creates a shared space that houses files and
directories for synchronization with other sites. S-Sync
keeps information about versions and updated content in
the form of local files which we call “change-sets”.
These change-sets are exchanged during periodic recon-
ciliation between randomly selected sites.

2.1 Definition of Summary Hash and Basic-SHH

An SHH is a causal history using summary hashes as
version identifiers. A version indicates a state that a rep-
lica site can create by applying the update(s), the subse-
quent changes due to content upload, and the various
merge operations resulting in a new merged version.

S-Sync uses summary hashes as pointers into the
change-sets to provide auditability and traceability in
case of malicious user attack and undo/time-travel in case
of accidental loss of data. In such cases, S-Sync can trav-
erse the SHH version history tree to locate the changes
that need be undone and provide users with the changes
that precede the accidental deletion or the undesirable
update.
Basic-SHH: Let the summary hash Si is an identifier to
represent a version Vi, where a version indicates a state
of the synchronization unit. (e.g. snapshot of the shared
directory). The identifier Si, we call, Summary Hash
(SH), is generated as below:
Let Hi = h(Vi), where h is a collision resistant hash func-
tion, and Sp is a Vi’s predecessor’s identifier.
• Si = h(Sp||Hi) when Vi has a single predecessor.
• Si = h(Sp

*||Hi) when Vi has multiple predecessors
(i.e., Vi is created by merging multiple concurrent

versions). Sp* is the concatenation of multiple Sps,
where Sps are sorted by lexicographical value of Sp.)

For instance, as shown in Figure 1, V1’s predecessor is
V0, thus Si is h(S0||H1). Also, V4 is a merge of V1 and V2,
thus S4= h(S2||S1||H2). Please note that S2 = (048) comes
before S1 = (DD1) in lexicographical order (048 < DD1).
 Tamper-Evident Verification: The inclusion of prede-
cessor hashes in the summary hash is similar to that of
Merkle’s tamper-evident hash tree [Me87] or hash chain-
ing structure [Ba92, Ha91]. Therefore, by using this sum-
mary hash as a version identifier, one can readily prevent
various ordering attacks [Sp99]. Moreover, since the
summary hash is collision resistant, it is computationally
infeasible to find two different summary hash histories
given the latest version’s summary hash. This is impor-
tant because there is a unique summary hash history as-
sociated with a given summary hash; a version’s sum-
mary hash is a compact and secure summarization of all
the causally preceding writes.

Furthermore, SHH achieves its tamper evident prop-
erty by signing the latest summary hash, as one can easily
verify the previous update history by traversing the sig-
natures and matching them with the site that signed it.
For example, to verify the summary hash S5 for version
V5 in Figure 1, one needs to locate summary hashes for
both S3, for version V3, and S4, for version V4, and check
if the hash over (S3||S4||H5) matches S5. If it does, then
one can recursively verify S3 and S4 until reaching either
a previously verified summary hash or S0, the initial root.

Our current implementation provides an “S-Sync
State Reconstruction” interface with which the user can
specify a previous state that needs to be reconstructed.
RepliWiki utilizes S-Sync’s interfaces to trace and undo
slanderous edits to articles.

2.2 Efficient Update Propagation using SHH

Efficiency in update propagation is at the heart of opti-
mistic replication [Sa05]. In S-Sync, we craft summary
hashes in a manner that is useful both for verifying the
version-ordering and for figuring out the exact set of
updates to be exchanged. The SHH data structure com-
bines the modification (updates) and synchronization
(reconciliation) histories in a single data structure, which
is significantly simpler than those used with traditional
version vectors and also provides a tamper-evident up-
date tree.

2.2.1 Anti-Entropy Reconciliation with SHH

Optimistic replication protocols are flexible with respect
to network topology because techniques such as epi-
demic algorithms propagate updates in a reliable fashion
even when the communication between replicas is unsta-
ble or unreliable due to network partitions [De87,Sa05].
To be network efficient, S-Sync propagates updates be-
tween replicas via pair-wise reconciliations [De87,Te95].

if M appears in SHH-X { Subset Case: “do nothing” }
else if L appears in SHH-Y { Dominance Case:

“calculate SHH/Content-delta and send it to Site-X” }
(Upon receiving it, Site-X applies SHH-delta)

else if L does not appear in SHH-Y { Concurrent Case:
“calculate SHH/Content-delta and send it to Site-X” }
(Site-X merges SHH/Content-delta into its own.)

L

SHH-X : SHH of Site-X
L: Latest Hash at Site-X

if (L equals M) msg = “equal”
else msg = “entire-SHH”if (msg == “entire-SHH”)

then Send SHH-X to Site-Y
else stop.

Site-X:
Pulling Site

Site-Y:
Source Site

Entire SHH

1

2

3

4

SHH-Y: SHH of Site-Y
M: Latest Hash at Site-Y

SHH-X

msg

if M appears in SHH-X { Subset Case: “do nothing” }
else if L appears in SHH-Y { Dominance Case:

“calculate SHH/Content-delta and send it to Site-X” }
(Upon receiving it, Site-X applies SHH-delta)

else if L does not appear in SHH-Y { Concurrent Case:
“calculate SHH/Content-delta and send it to Site-X” }
(Site-X merges SHH/Content-delta into its own.)

L

SHH-X : SHH of Site-X
L: Latest Hash at Site-X

if (L equals M) msg = “equal”
else msg = “entire-SHH”if (msg == “entire-SHH”)

then Send SHH-X to Site-Y
else stop.

Site-X:
Pulling Site

Site-Y:
Source Site

Entire SHH

1

2

3

4

SHH-Y: SHH of Site-Y
M: Latest Hash at Site-Y

SHH-X

msg

Figure 2: S-Sync Protocol Details. Figure shows the varia-
tions in S-Sync protocol: Latest Hash Equal, Subset case,
Dominance case, and Concurrent case.

This work is under review at Usenix Annual Technical Conference, 2007 (Not for distribution)

- 4 -

S-Sync employs a “pull” mechanism for reconciliation.
The site that initiates reconciliation is called the initiator
or the “pulling” site. The source is the site that responds
to the initiator’s request for new updates by checking if
the two sites have any differences in their SHHs and then
determining the summary-hashes that need to be trans-
ferred back to the pulling site.

2.2.2 S-Sync Protocol Explained

The S-Sync protocol, as in Figure 2, facilitates update
exchange among replica sites using the following two
variations. The first, called Entire SHH exchange sends
the entire SHH during pair-wise reconciliation. The sec-
ond variation sends the latest SH first. If the source re-
quires additional SH’s to compute the dominance, the
entire SHH can be transferred. For instance, in the first
step of the S-Sync protocol, the initiator or pulling Site X
sends the latest hash (SX) to the source or reconciling Site
Y. If SX is not equal to SY (Site Y’s latest hash) then Site
Y asks for the entire SHH from Site X. With the entire
SHH at Site Y, the version dominance can now be de-
termined by checking whether Site X’s latest version
(SX) appears in its SHH. In a typical reconciliation,
where Site X with latest hash SX pulls from Site Y with
latest hash SY, there can be one of the four possible cases
detected at the source, as also shown in Figure 2:
Latest-Hash-Equal Case: The reconciling sites may
have the exact same updates either because both sites
have received the latest updates or because there have
been no recent updates in the system. If the latest hashes
(SX and SY) of both sites are equal, this implies that the
sites have the same content. If this is the case, nothing
needs to be transferred back to the pulling site.
Subset Case: The pulling site may dominate the source,
in which case the source site’s version-tree is found to be

a subset of the initiator’s.
Dominance Case: The initiator’s latest hash may already
exist in the source’s SHH, in which case the source site
dominates. Having established dominance, the source-
site (Site Y) must next determine the updates to be trans-
ferred back. To do so, the source-site calculates the dif-
ference between the two sites, referred to as the deltas.
 The updates to Site Y’s SHH are captured in, what we
call an “SHH Delta”. Since the SHs are simply the identi-
fier for a version the changes in the versions are bunched
together in a “Content Delta”. Site Y transfers these del-
tas back, which are then applied using either B-SHH or
A-SHH, to bring the initiator’s state to the source’s cur-
rent state.
Concurrent Case: A concurrent case is where the rec-
onciling sites may have common summary hashes in their
respective version trees but have different latest hashes.
For instance, Site X’s SHH and Site Y’s SHH are con-
current when these two SHH trees have some SHs in
common but the latest hashes (SX and SY) are not the
same. In S-Sync protocol, Site Y calculates the SHH and
Content Deltas, to be transferred back to Site X, where
these deltas are merged.

2.2.3 Delta Calculation in SHH

The SHH Delta is obtained by traversing the SHH tree
from top to bottom in a topologically sorted manner, this
delta excludes the nodes which already appear in the
other SHH tree. The following is a simple technique for
computing the SHH Delta.
SHH Delta = Edges containing topologically sorted
nodes in SHHY - topologically sorted nodes in SHHX, if
appears in SHHY -------- [I]

The edges in the SHH tree contain the actual data
content. Thus, traversing the version tree for the edges
provides the required updates in the system and corre-
sponding version changes.
Content Delta = Edges for the Nodes in SHHY with ex-
actly one parent - Edges on Nodes in SHHX with exactly
one parent if appears in SHHY -------- [II]

Upon receiving the deltas, the initiator performs one
of the following two steps: (1) apply the delta if the
source site dominates or (2) merge the delta if the sites
are concurrent.

3. Associative-SHH
We wrote a SHH-Visualizer utility to visualize the com-
plete SHH version tree, from which we found that S-
Sync with B-SHH has a detrimental impact on the recon-
ciliation protocol and cannot guarantee eventual conver-
gence when reconciling concurrent updates. We show the
visualization results for vacuous reconciliations in the
following sections.

3.1 Vacuous Reconciliation of Basic-SHH

V0

V1 V2 V3 V4

V5 V6

C4

V8

V9

V7

C3C2C1

Site X

V0 V0 V0

Site Y Site Z Site W

0A3

0A3,587

587

410

224

5BC 07A

66A
07A,5BC

AB2
0A3,07A,587,5BC 0A3, 07A,

587, 5BC

9A2

time
t0

t1

t2

t3

t4

V0

V1 V2 V3 V4

V5 V6

C4

V8

V9

V7

C3C2C1

Site X

V0 V0 V0

Site Y Site Z Site W

0A3

0A3,587

587

410

224

5BC 07A

66A
07A,5BC

AB2
0A3,07A,587,5BC 0A3, 07A,

587, 5BC

9A2

time
t0

t1

t2

t3

t4

Figure 3: B-SHH creates new identifier for each merges in
this case S7, S8 even if the merge will produce the same
deterministic result. Thus, B-SHH may not converge in
some unfortunate merge paths as above. However, the A-
SHH, shown in {}, will be able to determine the equality in
any arbitrary sequence of merges.

This work is under review at Usenix Annual Technical Conference, 2007 (Not for distribution)

- 5 -

Our experience with B-SHH shows that it creates a large
number of merged summary hashes, in the SHH tree, due
to the out-of-order (or random) reconciliation among
replica sites. We attribute this behavior to the flaw in the
construction mechanism of B-SHH which creates a new
summary hash for every merge. During the reconciliation
process the sites end up transferring these intermediate
summary hashes but no real content is transferred. It is
therefore fitting to label such a reconciliation as vacuous
or non-data transferring.
The obvious fix for the above problem is to avoid vacu-
ous reconciliations, which also happens to be the primary
motivation for developing A-SHH. Experiments and fur-
ther analysis show that the A-SHH construction mecha-
nism consumes an order of magnitude less bandwidth
than the B-SHH by avoiding these vacuous reconcilia-
tions. The results are discussed in the evaluation section.

Figure 3 shows vacuous reconciliation and how these
intermediate version identifiers create a vacuous domi-
nance situation. For instance, when Site Y calculates the
SHH Delta and Content Delta, as described earlier, it
determines that there is no content that needs to be sent
back to the pulling Site X. The SHH Delta in this case is
{(S2,S8), (S6,S8), (S7,S9)}. This reconciliation synchro-
nizes both sites in terms of their SHH trees without send-
ing the actual content deltas. The other possible recon-
ciliation scenario is vacuous concurrence, where the sites
have the same content but a different latest hash, which
leads to the flagging of false conflicts when there are
none. A-SHH on the other hand averts the need for any
non-data transferring reconciliation due to its set-based
design, thus providing faster convergence while consum-
ing far less bandwidth than B-SHH.

3.2 Improvement in A-SHH over B-SHH

A-SHH’s summary hash construction follows one of the

following distinct approaches, as illustrated in Figure 4.
If the version change is due to;
• Content Update, the construction follows the B-SHH’s

construction,
• Content Merge, it uses a set based concatenation.

In the case of Content Merge, the summary hash (Si)
is a union of Si

’s parents in a lexicographically sorted
order as we see in Figure 4. We refer to the latest hash in
the A-SHH construction mechanism as the “latest-hash-
set”, shown as {S1, S2, S3}. As given in Figure 4, the up-
dates C1, C2, C3 show the updates on the base version,
V0. Consequently, C1 brings the base version V0 into V1
(V0 V1). The edges form due to this content update and
thus are always representative of a version update and
actual data changes in the system. The global SHH keeps
information about these version transitions and the up-
date information. Notably, all updates lead to states with
only one parent, e.g., S1, and S2 and states with more than
one parent indicate a merge operation, e.g., states {S2,
S1}.

3.3 Eventual Convergence Guarantee in A-SHH

The fundamental property of optimistic replication de-
sign is to achieve consistency across replicas: that is, all
sites move towards eventual consistency [Sa05]. Replicas
held by two replica sites may vary in their content be-
cause of the order in which they receive and process up-
dates. As the replicas try to achieve consistency by ex-
changing latest updates, it is necessary to identify up-
dates and their order of arrival in order to avoid/detect
replica inconsistency. Having a technique that can re-
solve inconsistencies due to merges based on
faulty/incorrect ordering is also desirable.

Merge Properties in SHH: To correctly identify all
inconsistencies that occur due to an update or an out-of-
order merge, it is imperative to first identify the merge
operation and subsequently develop techniques to facili-
tate identification of the correct update-order. Please re-
call that any version tracking mechanism in optimistic
replication should be able to assign the same version
identifier to the final merged content if the merges are
deterministic [Sa05]. We extend this property and intro-
duce two additional merge properties: commutative and
associative merges. The individual merge in SHH can
thus have one or more of the following merge properties:
Deterministic, Commutative, and/or Associative. Our
approach to correct update-ordering and version-tracking
for eventual convergence, in view of concurrent updates,
follows these merge properties. We first define these
properties and then illustrate how SHH incorporates them
in its construction mechanisms.
•D-Merge: Merge, m(x,y), is said to be deterministic if it
produces the same merged result from inputs x and y,
irrespective of the site that performs the merge operation.
•C-Merge: Merge, m(x,y), is commutative if m(v1,v2)

{S2, S1, S3} ={S2, S1} U {S3}

Site-X Site-Y Site-Z

S0=“dir name”
V0

V2V1

S2=h(S0 || H2)

V3

S3=h(S0 || H3)

S0

S1 S2

{S2, S1}

{S2, S1} ={S2} U {S1}

S0

S1 S2 S3

{S2, S1}

{S2, S1, S3}Associative-SHH

C1 C2 C3

V0 V0

048,DD1,F78

048,DD1

V4

V5

52C

DD1 048 F78

time
t0

t1

t2

t3

S1=h(S0 || H1)

{S2, S1, S3} ={S2, S1} U {S3}

Site-X Site-Y Site-Z

S0=“dir name”
V0

V2V1

S2=h(S0 || H2)

V3

S3=h(S0 || H3)

S0

S1 S2

{S2, S1}

{S2, S1} ={S2} U {S1}

S0

S1 S2 S3

{S2, S1}

{S2, S1, S3}Associative-SHH

C1 C2 C3

V0 V0

048,DD1,F78

048,DD1

V4

V5

52C

DD1 048 F78

time
t0

t1

t2

t3

S1=h(S0 || H1)

Figure 4: Associative-SHH example. The merged state is
represented as a set of predecessors' identifiers. At time t3
when Site X merges S1 and S2, the merged state is repre-
sented as a set {S1, S2}.

This work is under review at Usenix Annual Technical Conference, 2007 (Not for distribution)

- 6 -

produces the same merged output as m(v2,v1). E.g., A+B
= B+A.
•A-Merge: We call a merge operation associative if
m(v1,m(v2, v3)) produces the same merged result as
m(m(v1, v2), v3) . E.g., A+(B+C) = (A+B)+C.

B-SHH assigns different version identifiers, 899 and
A16 in Figure 5, on sites X and N respectively, even
though the data content (i.e., X6) is the same on both the
sites. The assignment of different version identifiers for
the same merge operation is made because B-SHH does
not handle the associative properties. This also results in
flagging the merge as conflicting which is obviously a
false-conflict. However, the B-SHH construction cor-
rectly handles the deterministic and commutative merge
properties as it creates a new summary hash for all newly
introduced updates, be they Content Updates or Content
Merges. However, A-SHH, in Figure 5, assigns the same
version identifiers {0A3, 587, 5BC} on both the sites by
correctly capturing D-Merge, C-Merge and A-Merge.
The A-SHH construction mechanism does this by taking
the union of lexicographically sorted summary hashes of
the parent’s when all the merges are DCA. A-SHH is
more efficient than B-SHH in managing the summary
hash and merging updates with other sites.

The merged summary hashes capture the meta-
information of the merge operation, including the order
of merge and if it meets any of the D, C, or A merge
properties. However, should the merge be non-DCA,
both the B-SHH and A-SHH flag the merged summary
hash and report it as a potential conflict. The conflict
resolution in both SHH construction approaches assumes
knowledge of some kind of application-specific seman-
tics.

Decentralized Convergence in SHH: It is assumed
that identical versions with the same content will be
produced at different sites, possibly as a result of merges
between reconciling sites.Indeed, such an occurrence can
be frequent when the same deterministic merge

procedure is used to resolve the same set of conflicting
updates. SHH will assign the same version identifier if
the identical content is independently produced from the
identical histories. Interestingly, this property of SHH
allows distributed replicas to converge even across
partitioned networks. For instance, in Figure 5, a
comparison of B-SHH, A-SHH, and Bayou–VV [Te95]
show how each of these techniques will identify and
assign version identifiers.

The merge operation on different replica sites can as-
sign the version identifier independently without any
communication; it is possible for a site in each parti-
tioned network to assign the same version identifier.
However, this is difficult to capture in a decentralized
setting. Therefore, unless two sites communicate with
each other, the sites cannot recognize that each site has
independently produced an identical version. If different
content version identifiers are not assigned to resolve this
problem then SHH will report concurrent update, thus
introducing possible conflict in the system. We refer to
such a scenario as false conflict cases. Unfortunately,
such false conflicts have a vast cumulative effect on any
future descendant versions. For example, if V1 and V2 are
considered in false conflict, then all the versions that are
based on V2 will be in conflict with V1. This false con-
flict will cumulatively create further false conflicts
among descendant versions. In contrast, if V1 and V2 are
not in conflict, then all the versions that are based on V2
will dominate V1. This cumulative false conflict not only
incurs the unnecessary overhead of running the Conflict
Resolver, but can also create an undesirable merged re-
sult among descendant versions.

Figure 5 shows three concurrent updates in the sys-
tem. Since these updates are on different files, the merges
produced by them are by definition deterministic, com-
mutative and associative, as discussed earlier. The final
output produced by merges (M1, M3) and (M2, M4) on
Site X and Site N should therefore be the same in terms

Site-X: Y:

V1 V2 V3 V1 V2 V3

V0 V0V0V0 V0 V0

X Y Z L
1 1 1 0

M
0

N
0

C1

Z: Site-L: M: N:

5BC 0A3587

E84

0A3 587 5BC

V5

V7 A16899

410 V4

V6

0A3,587

0A3,587,5BC

587,5BC

0A3,587,5BC
X Y Z L
1 1 1 0

M
0

N
0

C3C2

X Y Z L
1 1 0 0

M
0

N
0 X Y Z L

0 1 1 0
M
0

N
0

Site-X: Y:

V1 V2 V3 V1 V2 V3

V0 V0V0V0 V0 V0

X Y Z L
1 1 1 0

M
0

N
0

X Y Z L
1 1 1 0

M
0

N
0

C1

Z: Site-L: M: N:

5BC 0A3587

E84

0A3 587 5BC

V5

V7 A16899

410 V4

V6

0A3,587

0A3,587,5BC

587,5BC

0A3,587,5BC
X Y Z L
1 1 1 0

M
0

N
0

X Y Z L
1 1 1 0

M
0

N
0

C3C2

X Y Z L
1 1 0 0

M
0

N
0

X Y Z L
1 1 0 0

M
0

N
0 X Y Z L

0 1 1 0
M
0

N
0

X Y Z L
0 1 1 0

M
0

N
0

Figure 5: Example of convergence across partitions. Convergence across Partitioned Network Compares B-SHH, A-SHH,
and Bayou-VV. The Sites L, M and N receive the updates (C1, C2 C3) by reconciling with sites X, Y and Z respectively, before
the partition. Since the updates were made of different files, the merges produced by them are commutative and associative.

This work is under review at Usenix Annual Technical Conference, 2007 (Not for distribution)

- 7 -

of their data content. We also show the affects of associa-
tive merge property of A-SHH in terms of its conver-
gence across partitioned networks in Figure 5. It is im-
portant to note that the A-SHH was designed to converge
faster without creating any false conflicts across parti-
tioned networks. However, B-SHH promises an identical
version identifier only in the case where either the parti-
tion or the converging site has received the updates pre-
viously, and only when the sites attempt convergence of
two deterministic concurrent updates.

A-SHH, on the other hand handles any number of de-
terministic concurrent updates. For instance, update rep-
resented as A, B, and C will be merged as: A+(B+C) =
(A+C)+B = (A+B)+C. This guarantees the identical final
version identifier regardless of the order of the recon-
ciliation and network partitions. This is accomplished
through “set” based concatenation of its lexicographi-
cally sorted parents. In this way, by correctly resolving
the different partitions, A-SHH guarantees that no false
conflict will occur in the system. B-SHH, on the other
hand, mistakenly treats these two versions 899 and A16
as concurrent versions on Sites X and N respectively (see
Figure 5) and therefore will require a vacuous reconcilia-
tion before full convergence can take place.

4. Overcoming SHH Overheads
Any attempt to collate causal histories into a single data
structure significantly affects its size [Sa05]. In the same
respect, the size of the SHH grows in proportion to the
number of update instances in circulation. Another im-
portant challenge for our S-Sync protocol is to conserve
the bandwidth consumption, either by reducing the size
of the SHHs being sent over the network or by restricting
the number of round trips. To address these issues, in
addition to using a well-known decentralized pruning
technique we also explored a protocol enhancement to
the S-sync protocol.

4.1 Acknowledgement List for Log Pruning

As it is based on a causal history, the size of the SHH can
be considered unbounded. To be network efficient, SHH
need to be pruned periodically. We take a common ap-
proach used in other optimistic replication techniques
[Go92, Sa02]. We leverage SHH’s reconciliation process
for both tracking the update and transferring its acknowl-
edgement receipts. An acknowledgement receipt estab-
lishes, for a given version, which replica sites have re-
ceived that particular version.

To provide an audit trail for possible malicious up-
dates and to provide undo guarantees against any unin-
tended deletes, it is necessary to assure that at least one
site (called the archiving site) in the system maintains the
complete history for any future verification. The ar-
chiver-site is assumed to have a fairly large storage to

keep the update history along with the acknowledgement
receipts from other sites.

A site can safely delete the update histories and their
change-sets up to state SX, if the archiving site has re-
ceived all update up to SX

. If the archiving site is not
available for an elongated period, each site can make its
own pruning decisions based on the acknowledgement
receipts that it has collected. We assume that each site
will use the global membership information that it has.
(i.e., participantsList.txt file in S-Sync implementation)

The update receipts are propagated as part of the
shared directory in S-Sync. A special shared folder called
“AckList” collects the summary hashes that were signed
by the receiving site. The anti-entropy reconciliation syn-
chronizes the AckList folders across the sites, exploiting
the acknowledgement-receipts collected at other sites.
Sites can independently arrive at the pruning decision as
below:
(a) Prune SHHs up to version Vi if the archiving site has
received this state and delete the corresponding change-
sets after the SHH is pruned.
(b) Prune SHHs up to version Vi, provided that all sites
have received that version based on the current acknowl-
edgement list, if the archiving site is not reachable.

4.2 Optimization in S-Sync Protocol: k-SHH

Our initial attempts at optimizing the reconciliation pro-
tocols were based on the decision to transfer either the
entire SHH at once or the latest SH first and the entire
SHH in the next step. The S-Sync protocol targets the
bandwidth consumption issues by reducing the number
of round trips by sending the entire SHH in the first step.
However, sending only the latest hash in the first step
and then sending the entire SHH, if needed, in the second
step consolidates on bandwidth. The intuition for choos-
ing the “latest hash first” variation is to avoid sending the
entire SHH when sites are already or almost in sync
which, in turn, reduces the traffic over the network.

We know that transferring 20 byte SH will have the
same overhead and bandwidth expense as sending a fixed
additional number of SHs. Thus, instead of sending the
entire SHH or only the latest SH, we found sending up to
‘k’ entries in SHH to be most efficient, since it may cost
the same amount of network delay to send 1 SH entry
and 100 SH entries.

In case where the pulling site dominates the source or
has a concurrent update, the pulling site will end up send-
ing the entire SHH, after the initial exchange of latest
SHs exchange. If the pulling sites send 100 SH entries,
the source may be able to find the common ancestor and
send back the needed delta to the pulling site. In this
case, the entire SHH transfer is not needed. However, in
cases where the common ancestor cannot be found using
100 SH entries, the entire SHH transfer is required in
order to find the common ancestor and the delta.

This work is under review at Usenix Annual Technical Conference, 2007 (Not for distribution)

- 8 -

5. Evaluation
In this section, we prove that the SHH data structure is
capable of providing an efficient and reliable optimistic
replication mechanism for distributed applications. Thus,
our focus is primarily on testing the fundamental proper-
ties of A-SHH. Through our experiments and simula-
tions, we demonstrate that A-SHH:
1. Prevents unbounded replica divergence,
2. Shows an order of magnitude improvement in con-

vergence speed by limiting the number of vacu-
ous/non-data transfer reconciliations,

3. Tolerates divergence among disconnected nodes, yet
provides convergence across partitioned networks,

4. Performs comparable to the traditional version vector
approach in dealing with multiple concurrent updates.

SHH Implementations: The SHH version tree and other
data-structures, used in the development of S-Sync Pro-
tocol, are implemented in Java. We, extensively, use
Java's Hashtable functionality to maintain the version
tree’s internal reference and collections. The “dominance
information” and “successor-predecessor (parent-child)”
relationships are maintained as a key-value pair in a
separate hash table. Such a data facilitates traversal dur-
ing dominance calculation based solely on the latest
hash. Further, a pointer is maintained for each Content
Delta and its corresponding summary hashes.

Please note that the Content Delta keeps track of
changes made to the S-Sync’s shared-folder, where any
updates to a file or addition/deletion of files are recorded.
Whereas the SHH Delta captures the changes in the SHH
tree, affected by the updates made to the shared-folder.
Therefore, a delta or the change-information is an effi-
cient mechanism to avoid transferring a lot of content
across the network [Tr99]. Since, SHH stores the delta
information in memory, the SHH Delta and Content
Delta are calculated by recursively traversing the
Hashtable in a topologically sorted [Co01] order as de-

scribed in Section 2.2.3.

5.1 Evaluation Methodology

We developed the SHH-Simulator to aid in the evalua-
tion and simulation of the SHH protocols. The SHH-
Simulator has three components: “Replica Site Selector,”
“Update Injector,” and “Shared Object.” Using the Rep-
lica Site Selector, a replica site is made to reconcile with
another randomly selected site. After reconciliation, the
Update Injector is then used to choose and implant new
updates at a randomly selected replica site, thus simulat-
ing a real world arbitrary order of update among replicas.
These randomly generated updates can be clean or con-
current depending on the state of each replica site. We,
interchangeably, refer to concurrent update as non-
conflicting updates, as these updates are made to differ-
ent files on different replica sites.

Further, a Shared Object is the unit of replication, for
instance the “shared directory” in the case of S-Sync. At
predetermined time intervals the reconciling site ran-
domly selects a replica site and exchanges the version
information based on the reconciliation scheme.

To aid in consistency across experiment runs, the ran-
dom order for each site is first logged and then enforced
by the SHH-Simulator during all subsequent simulation
runs. This is done to aid in validating the results against
simulations carried out on a local desktop machine. We
found that the results follow the same pattern apart from
obvious differences in the reconciliation times due to
PlanetLab nodes having varying wide area latencies.

5.2 Update Propagation & Divergence Control

We first show through simulation that while the number
of states generated by the B-SHH techniques are un-
bounded as the number of concurrent updates increases,
the performance of SHH and Bayou-VV remain rela-
tively constant. We then demonstrate the efficient update
propagation and divergence control properties of A-SHH
and compare the variations in SHH protocol construc-
tion.

We studied several parameters to understand the S-
Sync reconciliation protocols, namely the: (i) reconcilia-
tion scenarios (e.g., Dominance case, Latest Hash Equal
case, Subset case and Concurrent case), (ii) size of SHH
data structure, the number of SHH states being main-
tained and stored as key-value pairs, and (iii) speed of
update convergence among replica sites.

First, to determine the version dominance between
the point of update injection and replica convergence, S-
Sync protocol transfers either the latest summary hash or
the entire hash history. As described earlier, efficiency in
update propagation is considered an important aspect of
optimistic replication. Therefore, to be network efficient
we compare the number of bytes transferred using each
of the replication schemes.

0

10

20

30

40

50

60

70

80

C D VD VC Total

B-SHH A-SHH

Reconciliation Scenarios in S-Sync

N
os

. o
f r

ec
on

ci
lia

tio
ns

Concurrence Dominance Vacuous
Concur.

TotalVacuous
Domin.

0

10

20

30

40

50

60

70

80

C D VD VC Total

B-SHH A-SHH

Reconciliation Scenarios in S-Sync

N
os

. o
f r

ec
on

ci
lia

tio
ns

Concurrence Dominance Vacuous
Concur.

TotalVacuous
Domin.

Figure 6: Effective Reconciliation Steps in S-Sync. Our
experiments show that the B-SHH construction mechanism
has to perform 76 effective reconciliations compared to just
39 for A-SHH when converging 4 concurrent updates
among 16 replica sites.

This work is under review at Usenix Annual Technical Conference, 2007 (Not for distribution)

- 9 -

The term “reconciliation scheme” is used to refer to
the combination of SHH construction and the reconcilia-
tion protocol, e.g., B-SHH with entire SHH and A-SHH
with entire SHH, as shown in Figure 6. We measure “ef-
fective reconciliations”, that is, the reconciliation scenar-
ios where sites update their SHH version tree. For ex-
perimental purposes we ignore the reconciliation
schemes of: latest-hash-equal-case and subset-case, as
these schemes only exchange the top hash and no sum-
mary hash. As it is, these vacuous hashes do not affect
any change in SHH tree.

The results below were obtained using the SHH-
Simulator. The simulations were carried out with 16 rep-
lica sites and 4 concurrent updates injected on randomly
selected sites at the beginning of the simulation. These
non-conflicting updates are injected in the system using
an Update Injector program. Further, the replica sites are
configured to start the random anti-entropy process every
30 seconds. Finally, we experimented with the Basic and
Associative SHH implementations, sending entire SHH.

5.2.1 Reconciliation Scenarios

In our study of SHH’s properties, we experimented with
several reconciliation schemes that exhibited varying
degrees of success with respect to scalability and per-
formance. We identified six reconciliation scenarios, in
Section 3.1. As discussed, the vacuous cases indicate
non-data transferring reconciliations where only the latest
summary hashes are exchanged to compute a dominance
relationship. The variations in reconciliation schemes
stem from the evaluation requirement for the most effi-
cient SHH exchange.

Figure 6 shows B-SHH has to perform 37 vacuous
reconciliations and a total of 76 effective reconciliations
before it converges, as compared to the 39 effective

reconciliation steps required for A-SHH to converge.
Obviously, more reconciliation steps translate into higher
bandwidth consumption; consequently B-SHH with
Entire SHH exchange shows an order of magnitude
increase in bandwidth usage.

After experimenting with the summary hash history
exchange across 16 sites on PlanetLab, we found that the
traditional measure for exchange does not effectively
prove the overheads of reconciliation schemes. Thus, to
show the reconciliation scenario breakup we use an
epoch range. An epoch signifies a cycle where all replica
sites in the system complete reconciliation at least once
among all their peers. The epoch ‘1’ indicates that all
replicas have reconciled at least once. However, this does
not mean that the sites were able to resolve all dominance
relationship, which might take more steps to accomplish
as updates might not have been propagated across the
system during the first anti-entropy sweep.

As shown in Figure 7, the experiment starts when all
replicas have the same initial state. We then introduced 4
concurrent updates at randomly selected sites from a pool
of 16 sites. At the start of the experiment (i.e. epoch
range 1 to 2), we observed more dominance and concur-
rence cases while the sites were busy collecting the actual
changes (i.e. content deltas). However, during the epoch
range starting from 3 to 12, we notice changes resulting
from the two different SHH constructions and attribute
them to the manner in which A-SHH and B-SHH con-
structions resolve version conflicts. We found that the B-
SHH with Entire SHH exchange reconciliation-scheme
performs a significantly large number of vacuous recon-
ciliations to synchronize the SHH trees, by continuously
exchanging SHH Deltas implying that only the summary
hashes are exchanged. Note that the SHH Deltas are rela-
tively small in size as compared to content deltas, which

0

5

10

15

20

25

30

35

1 to 2 3 to 4 5 to 6 7 to 8 9 to 10 11 to 12 13 to 14 15 to 16

Latest Hash Equal Dominance Subset Concurrence Vacuous Concurrence Vacuous Dominance

0

5

10

15

20

25

30

35

1 to 2 3 to 4 5 to 6 7 to 8 9 to 10 11 to 12

N
um

be
r o

f R
ec

on
ci

lia
tio

n

Epoch Range Epoch Range

N
um

be
r o

f R
ec

on
ci

lia
tio

n

Basic-SHH Associative-SHH

0

5

10

15

20

25

30

35

1 to 2 3 to 4 5 to 6 7 to 8 9 to 10 11 to 12 13 to 14 15 to 16

Latest Hash Equal Dominance Subset Concurrence Vacuous Concurrence Vacuous Dominance

0

5

10

15

20

25

30

35

1 to 2 3 to 4 5 to 6 7 to 8 9 to 10 11 to 12

N
um

be
r o

f R
ec

on
ci

lia
tio

n

Epoch Range Epoch Range

N
um

be
r o

f R
ec

on
ci

lia
tio

n

Basic-SHH Associative-SHH

Figure 7: Reconciliation Scenario in Basic and Associative SHH. The experiment starts at a quiescent point when all 16 sites
are at the same state. At this point, four concurrent updates are injected at epoch time 0. Both the B-SHH and A-SHH recon-
ciliation schemes encounter the same number of dominance and concurrence cases when the sites start pulling the data (i.e.,
actual exchanges) in the first epoch range (1 to 2) but as the time progresses, B-SHH encounters a lot of vacuous reconciliations
and thus takes more time to converge than A-SHH.

This work is under review at Usenix Annual Technical Conference, 2007 (Not for distribution)

- 10 -

of course depends on the number and size of updates
published at the replica sites.

5.2.2 Number of States and Convergence Issues

In comparing the number of SHH states; (i.e. the number
of SHH states in the Hashtable), for the same experiment,
we found that the number of SHH states in B-SHH were
twice as many compared to A-SHH (18 vs. 9). This dif-
ference can be attributed to an important design decision
in A-SHH construction, where every new successor state
is a set based concatenation of all the causally preceding
parents. This ensures that even out-of-order updates and
random reconciliations produce the same version identi-
fiers and no intermediate and vacuous states. Thus, A-
SHH converges faster than B-SHH and furthermore,
guarantees the convergence even across partitioned net-
work. This is contingent on the fact that the updates were
transferred before the network partition occurred.

We compare B-SHH and A-SHH in terms of the
number of intermediate states generated in a completely
random anti-entropy environment. With the increase in
number of replicas, B-SHH tends to create an infinite
number of intermediate states even with a very small
number of updates. For instance, experimenting with
only three concurrent updates, B-SHH takes an exponen-
tial leap in Figure 8. We attribute this to the fact that
every merge in B-SHH creates a new state, and continual
reconciliation and subsequent merges create a very high
number of such states. A-SHH, on the other hand with
three concurrent updates and 16 replicas, reaches a stable
upper bound with number of intermediate state remain
constant thereafter. This, we believe, is promising be-
cause we now know we can guarantee convergence. To
further verify, we introduce five concurrent updates, the
number of states in A-SHH mechanism slowly inches
upwards and subsequently stabilizes when the numbers
of simulated sites are increased to 512, as shown in Fig-

ure 8.
The convergence properties of SHH is tested and the

replica convergence rate is plotted, in Figure 9. Here, we
also draw a comparison of SHH with traditional version-
vector approaches. The effective reconciliations per site
is compared with the number of sites converged. The
coordinate (6, 14) represents 14 converged sites with at
most six effective Reconciliations. Importantly, some of
the sites could have converged in less than six reconcilia-
tion steps. For instance, in the case of the A-SHH proto-
col all 16 sites converge after 7 effective reconciliations.

5.2.3 Reconciliation Protocols and SHs Exchanged

The A-SHH-Latest Hash Protocol reconciliation scheme,
in Figure 10, achieves better performance in terms of
data-size exchanged. Note that when the A-SHH Entire
SHH protocol does not perform any vacuous reconcilia-
tion, its performance is closely comparable to B-SHH
Entire SHH and B-SHH Latest Hash protocols. This is
because each of these reconciliation scheme share the
entire SHH version tree per reconciliation.

To determine the version dominance from the point
of update injection and replica convergence, in Figure 10
we show the comparison of all four reconciliation
schemes in terms of size of data transferred in the first
step and the compound steps for the Entire SHH or Lat-
est Hash Protocol respectively. The amount of bytes in-
cludes pulling site’s latest hash, both the sites IDs and
site’s entire SHH & RMI callback handle, depending on
the protocol variation.

To further improve on the Latest Hash Protocol
which sends the entire SHH in the second step, we con-
jectured that if the sites are not totally out of sync (i.e. the
difference in terms of states among their SHH trees is
less than a certain threshold value which we refer to as
k), sending ‘k’ SHH states in the second step would be
enough to determine the version dominance, thereby
avoiding the need for sending the entire SHH on the
other side in the second step.

To determine the optimal k size, we attempted send-
ing the varying number of SHH states over PlanetLab
with varying latency ranging from 0.2 ms to 92 ms and
found that it takes almost the same amount of time to
send up to 100 SHH states. Thus, the protocol tweak
from Latest Hash then Entire SHH to Optimized Latest
Hash Protocol (latest hash then k number of SHs then
Entire SHH) appears adequate assuming the sites are not
out of sync by more than k SHH states.

5.2.4 Tamper-evident Update History

A tamper-evident update history has attributes that are
exploited for update verification and version-roll-back
(time travel and undo) capability. The SHH verification
time involves a Depth First Search on the SHH tree from
the latest hash to the initial state. The time-travel/undo

0

10

20

30

40

50

4 8 16 32 64 128 256 512

Number of sites

N
um

be
r o

f s
ta

te
s

B-SHH (with 3 Concurrent Updates)

A-SHH, Bayou-VV (3 Concurrent Updates)

A-SHH, Bayou-VV (5 Concurrent Updates)

Figure 8: Comparison of number of SHH States in B-
SHH and A-SHH. This graph compares the number of
SHH states generated in B-SHH and A-SHH, in a com-
pletely random anti-entropy environment. With an increase
in the number of sites, B-SHH tends to reach an infinite
upper bound even with just 3 concurrent updates in the
system. The A-SHH construction mechanism slowly inches
towards its defined upper bound, in this case, 8 states for 3
updates and 32 states for 5 updates.

This work is under review at Usenix Annual Technical Conference, 2007 (Not for distribution)

- 11 -

time involves locating the change-sets by performing a
topological sort between the initial and the chosen state.
DFS and topological sort times for the Hashtable contain-
ing 1000 entries have been found to be less than 100ms.

5.3 RepliWiki Trace Replay on PlanetLab

SHH is used as the underlying mechanism to disseminate
and reconcile article updates published to the RepliWiki
web application on various PlanetLab nodes. To observe
the divergence, efficient update propagation, and conver-
gence benefits in a deployable environment, we con-
ducted a number of experiments that simulated article
contributions for a 24 hour period between 4 nodes on
PlanetLab.

We obtained the data necessary for this experiment
by downloading the entire database dump from
Wikipedia’s English Language Archive Site [WF06] and
extracting a full day’s trace that occurred between April
1, 2005 00:00:00 and April 1, 2005 23:59:59. We
determined that there were 5614 unique updates which
occurred on April 1st, 2005 so we randomly assigned
1516, 1387, 1464, and 1247 to each of the four Planetab
nodes. To do this, we created a RepliShuffle program
which expects a file containing Planetlab hostnames and
distributes them among the Trace table for exporting to
each of the Planetlab. We then created the
RepliTraceLoader program which replays the trace by
simulating users creating updates on each of the four
PlanetLab nodes at the time at which the update actually
occurred. By default, the RepliTraceLoader program
takes a full 24 hours to run; however, we implemented a
multiplier feature so that the experiment could be sped up
or slowed down while maintaining the time ratio between
article updates so as not to skew the experiment.

Our reason for extracting Wikipedia’s database into
our proprietary format was primarily to eliminate primary
and foreign key references which are difficult to manage
in a distributed environment. By concentrating only on
the relevant aspects to our prototype application (i.e.,
Title, Author, Hostname, Timestamp, and Description)
and eliminating all key references, data can thus be easily
exported and imported from the database between nodes.

As discussed, we use S-Sync to disseminate and rec-
oncile Wikipedia article updates between the 16 Planet-
Lab nodes. Here, the S-Sync protocol is used only to
publish the articles to other sites as it is the job of our
RepliDriver program to export updates relative to each
domain while importing updates exported from other
domains and made available via S-Sync. The RepliDriver
program is run as a cron job which exports updates in
XML files relative to each domain. This cron job also
publishes these updates in S-Sync for dissemination, and
imports updates exported from other domains that are
also disseminated via S-Sync. This cron job was run on
each domain periodically throughout the 24 hour experi-
ment. Notably, in RepliWiki, every modification to an
article is treated as a new update that is appended to an
existing set of modifications, thus the merges of concur-
rent updates are always associative and commutative. In
Figure 11, we show the change in the summary hash his-
tory size when the RepliTrace program is run across four
nodes from the 24 hour trace. The four sites W, X, Y and
Z individually injected concurrent updates into the sys-
tem every 5 minutes. It shows that the size of summary
hash history at each node increases as the sites are merg-
ing concurrent updates. Once the concurrent updates are
collected at every site, the size stays constant until next
updates are introduced in the system. The anti-entropy is
carried out every 30 seconds. Every node publishes one
update every 5 minutes (i.e., every 10th anti-entropy cy-
cle).

The results in Figure 12 validated our intuition to re-
think the design decisions of B-SHH’s construction and
develop a method that detects and then avoid intermedi-
ate states. Hence, by incorporating the a mechanism that
keep track of all previous summary hashes, by lexico-
graphically sorting them, we were able to see two order
of magnitude difference in the number of states. In this
experiment, we deployed S-Sync’s shared-folders on 32
PlanetLab nodes and randomly injected concurrent up-

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

B-SHH w ith latest hash

A-SHH w ith latest hash

B-SHH w ith entire SHH

A-SHH w ith entire SHH

Epoch Time

B
yt

es
 T

ra
ns

fe
rre

d
(in

 K
B

s)

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

B-SHH w ith latest hash

A-SHH w ith latest hash

B-SHH w ith entire SHH

A-SHH w ith entire SHH

Epoch Time

B
yt

es
 T

ra
ns

fe
rre

d
(in

 K
B

s)

Figure 10: Comparison of different reconciliation
schemes in S-Sync protocol. The comparison of all four
reconciliation schemes in terms of amount of bytes trans-
ferred before convergence. The “A-SHH with latest hash
first” reconciliation scheme has proven, by far, the most
efficient scheme per epoch time.

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6 7 8 9 10 11 12

Number of Effective Reconciliations per site

N
um

be
r o

f s
ite

s c
on

ve
rg

ed B-SHH
A-SHH, Bayou-VV

Figure 9: Convergence Comparison: A-SHH, like Bayou-
VV, converge faster requiring just seven reconciliations
compared to the twelve required by B-SHH.

This work is under review at Usenix Annual Technical Conference, 2007 (Not for distribution)

- 12 -

dates. Interestingly, both B-SHH and A-SHH’s perform-
ance is comparable with just 7 states to reconcile 32
nodes. However, publishing 4 and 5 concurrent updates
across the system shows a remarkable increase in the
intermediate states. The nodes running the A-SHH vari-
ant converged in about 24 minutes, with 30 seconds anti-
entropy cycle. We stopped the non-converging B-SHH
after the experiment runtime of 24 minutes. Nonetheless,
we suspect that convergence would have taken substan-
tially longer time, perhaps in the order of hours.

The size of A-SHH can be different from site to site
even if they have the same latest-hash set. For example, a
site with the latest hash set, {a,b,c}, can have
{a},{b},{c},{a,b},{b,c}, and {a,c} in the history, while
another node with the same latest hash set can have only
{a}, {b}, {a,b} and {c} in the history. Likewise, Figure
11 shows Site X and Site Z have more merge variants in
their A-SHH histories, while Site W and Site Y are en-
joying a rather efficient merging path. Note that, A-SHH
only collects update or revision histories and not merge
histories

6. Related Work
Version Vectors are commonly used for tracking up-

date dependencies in optimistic replication [Te95, Sa02,
Sa05, Al02, Ki92,Wa83, Gu91,Sa2]. A version vector is
a set of counters - one for each replica site in the system
[Pa83]. Since version vectors require one entry for each
replica site, the size of the version vector grows as the
number of replica sites increases. This has the potential
to not only limit scalability in terms of the number of
nodes that the system can accommodate, but also entails
some additional overhead in updating version vectors in
the event of site additions/deletions. In order to provide
the entry-wise comparison in version vectors, the entries
for newly added sites have to be propagated to other rep-
lica sites and the deleted sites have to be removed from

the version vectors [Al02,Pr97,Ra97]. Bayou
[Te95,Pe97] provided an elegant solution to this problem
by incorporating group membership change information
directly in its version vector-based replication protocol.
However, an SHH need not be affected at all by site ad-
ditions or deletions.

Version vectors are vulnerable to various attacks on
decentralized ordering because each entry in the version
vector summarizes the causal relations to a number, with-
out preserving enough information for others to prove the
correctness of the causal ordering histories. Thus, it is
easy for a malicious node to propagate incorrect informa-
tion to all replicas by falsifying the decentralized order-
ing state. Another drawback to version vectors concerns
accidental loss of data. For example, when the historical
ordering of versions is altered, any attempts to undo cor-
rupted updates may “restore” versions based on corrupt
data or cause an excessive number of valid updates to be
discarded [Ma02, Re95, Sm94, Sp99].

Spreitzer et al. [Sp99] designed a countermeasure to
deal with server corruption in Bayou. Like S-Sync, the
proposed solution offers both efficient update propaga-
tion and tamper-evident update histories. The local up-
date is signed by the replica site that initiates the update
to ensure that its contents cannot be altered by corrupt
servers. The server that accepts the update then crypto-
graphically chains it to the previous update accepted by
the same server to prevent other servers from reordering
and dropping updates. These chains are interleaved into
each replica’s update log and update origins can be
traced by traversing the chains. Bayou requires per-site
version vectors to figure out missing updates and crypto-
graphic chaining to provide tamper-evident access to its
update logs, as well as a dependency-check mechanism
for conflict detection. S-Sync uses a per-site SHH for all
of these functions, freeing itself from the version vector
maintenance, from potentially complex log merging, and
from specialized conflict management. Also, while the

0

50

100

150

200

250

300

3 4 5
Number of Concurrent Updates

N
um

be
r

of
 st

at
es

Associative-SHH

Basic-SHH

Figure 12: Comparison of number of SHH States in B-
SHH and A-SHH. This graph compares the number of
SHH states generated in B-SHH and A-SHH using random
pair-wise update exchanges (i.e., anti-entropy) among 32
Planet Lab nodes. When the number of concurrent updates
is 3, the B-SHH was lucky to converge with 7 SH entries.
However, when the concurrent updates are 4 and 5, the B-
SHH did not converge.

0

10

20

30

40

50

60

70

80

1 6 11 16 21 26 31 36 41 46 51
Anti-Entropy Time

SH
H

 S
iz

e
Site W
Site X
Site Y
Site Z C

B

D

A

0

10

20

30

40

50

60

70

80

1 6 11 16 21 26 31 36 41 46 51
Anti-Entropy Time

SH
H

 S
iz

e
Site W
Site X
Site Y
Site Z C

B

D

A

Figure 11: RepliWiki trace replay run 4 planet lab nodes,
showing that the size of summary hash history at each node
increases as the sites are merging concurrent updates. Once
the concurrent updates are collected at every site, the size
stays constant until next updates are introduced in the sys-
tem. Here, A: First concurrent updates from the four sites
collected, B: All four sites converge the first concurrent
updates, C: Concurrent updates injected, and D: SHH size
remains constant till new concurrent updates are injected.

This work is under review at Usenix Annual Technical Conference, 2007 (Not for distribution)

- 13 -

Bayou paper presented only a paper design of the sug-
gested countermeasures, S-Sync using SHHs has been
implemented and has been running on Planet-Lab with a
real RepliWiki application.

Both Bayou [Te95, Pe97] and the current implemen-
tation of S-Sync are operation-transfer systems that main-
tain and transmit records of update operations. The cur-
rent design of S-Sync keeps one SHH per site with point-
ers into a locally stored change-set. S-Sync could be used
as a state-transfer mechanism, as in WinFS [Ma05d], by
keeping an SHH for each file.

PRACTI, unlike some other systems, including
Bayou and S-Sync, sends invalidation messages between
replicas when objects are updated. The updated contents
are then fetched independently, for instance, when at-
tempting to read an invalid object or by using a hoarding
program. Since PRACTI uses version vectors similar to
Bayou, SHH can provide security benefits to PRACTI.
Likewise, S-Sync could employ PRACTI’s efficient in-
validation mechanism in its reconciliation schemes.

In the causal history approach [Sc94], each site
maintains the preceding causal history (i.e., all the ver-
sions that the site has received or created). During recon-
ciliation, sites exchange their latest version and its causal
history, from which each site can check whether or not
one version appears in the other’s causal history (e.g.,
Version X is a revision of version Y if Y appears in X’s
causal history). Since the causal history does not require
one entry for each replica site as in version vector, causal
history approaches in general readily support dynamic
membership changes. Unfortunately, since the size of the
causal history grows in proportion to update instances in
the system, the network bandwidth can be saturated by
the continual exchange of unbounded causal histories.

Although the concept of causal history is not new
[Sc94], this paper presents a novel, practical construction
that meets applications’ security needs and relates our
experiences evaluating a real implementation. Our pre-
vious work on Hash History [Ka03] produced a causal
history implementation which used the cryptographic
hash of version content as a version identifier to deter-
mine dominance for state-transfer reconciliation. Unlike
S-Sync in this paper, this previous design required a hash
history for every shared object. This mechanism also
used an epoch number (a counter maintained at each site
for each version) to distinguish the current version from
the previous versions with the same content. Unfortu-
nately, this epoch number may or may not provide order-
ing correctness for some applications. For some applica-
tions, if each site independently produces the same con-
tent from different previous versions, the resulting ver-
sion should not be marked identical. We note that, with
the hash-epoch scheme, this case can happen. In addition,
the epoch numbering may introduce complicated log
management overhead, which can make it difficult to

prune old histories to control unbounded storage. Finally,
and perhaps most importantly, the hash-epoch scheme
does not maintain tamper-evident history linking.

Pastwatch [Yi06] is a version control system that al-
lows pair-wise reconciliation without a central server.
Pastwatch’s revtrees are similar to B-SHH’s version tree
structure since the version identifier includes the parent
versions’ identifier. It assigns two different identifiers to
the new merged versions that are independently created
from the same base versions, even when the resulting
merges are the same (e.g., (AB)C = A(BC)). This may be
a desirable characteristic for a version control system,
but, as we discovered with B-SHH, may not be suitable
for optimistic replication with random anti-entropy. S-
Sync with A-SHH guarantees eventual convergence by
using continuous random anti-entropy and assigning the
same version (state) identifier to independent associative
merges with the same predecessor versions.

BitKeeper [Bi06] also provides decentralized version
exchanges among peers. Its versioning structure is simi-
lar to B-SHH and hence suffers from the same problems.
Their web site recommends hierarchical reconciliation
schedule to avoid divergence

LOCKSS [Ma05p] replicates published articles in
order to preserve their content, such as if the publisher
goes out of business. Unlike SHH, it does not use en-
cryption, and it is not concerned with the process by
which articles are updated or distributed. LOCKSS fo-
cuses on determining whether an article’s contents have
been corrupted. To check this, replicas periodically run a
sampled poll to compare their stored contents and vote
on the correct contents if differences are observed. S-
Sync and LOCKSS differ in their application semantics
but share some common motivations. We believe that
these two schemes could work together to provide long-
term preservation with update accountability.

7. Conclusion
A Summary Hash History (SHH) is a novel, practical
method for maintaining a secure version tree in systems
that employ optimistic replication. The use of collision-
resistant summary hashes as version identifiers provides
source traceability of updates and an undo/time-travel
capability in a tamper-evident manner. S-Sync uses the
SHH data structure to extract the set of incremental up-
dates to be transferred between sites during pair-wise
reconciliation without using version vectors, freeing it-
self from the version vector maintenance issues. By using
summary hashes as pointers into change-sets, S-Sync
does not need to keep operation logs, thereby avoiding
log merging procedures.

In retrospect, the effort to build SHH-Visualizer was
quite worthwhile. SHH-Visualizer discovered that S-
Sync with B-SHH may not be suitable for optimistic rep-
lication with random anti-entropy and motivated our next

This work is under review at Usenix Annual Technical Conference, 2007 (Not for distribution)

- 14 -

design: A-SHH. S-Sync with A-SHH not only guarantees
eventual convergence but also enables the convergence
of concurrent updates (sometimes across partitioned net-
works) by assigning the same state identifier to inde-
pendent associative merges with the same predecessor
states.

Finally, http://isr.uncc.edu/SHH provides S-Sync,
SHH-Visualizer, and links to the RepliWiki nodes de-
ployed on PlanetLab to demonstrate the usefulness of the
SHH technique in a real world application.

References
[Al02] Almeida P. Baquero C., and Fonte V., Version Stamps-
decentralized version vectors. In Proc. of ICDCS, 2002
[Ba92] Bayer D., Haber S., and Stornetta W. Improving the
efficiency and reliability of digital time-stamping, Methods in
Communication, Security, and Computer Science, 1992
[Be06]Belaramani N., Dahlin M., Gao L., Nayate A., Venkata-
ramani A., Yalagandula P., and Zheng J., PRACTI Replication,
In Proc. of NSDI, 2006
[Bi06] www.bitkeeper.com/UG/Advanced.Branching.How.html
[Co01]Cormen T., Leiserson, C., Rivest R, Stein C. Introduc-
tion to Algorithms, Second Edition, McGraw-Hill Book Com-
pany, http://mitpress.mit.edu/algorithms/, 2001
[De87] Demers A., Greene D., Hauser C., Irish W., Larson J.,
Shenker S., Sturgis H., Swinehart D., and Terry D., Epidemic
Algorithms for Replicated Database Maintenance, PODC, 1987
[Go92] Golding R., Weak-consistency group communication
and membership. PhD thesis, Tech. Report, UCSC-CRL-92-52,
1992
[Gu91] Guy R., Ficus: A Very Large Scale Reliable Distributed
File System. PhD thesis, UCLA, 1991
[Ha91] Haber S. and Stornetta W., How to time-stamp a digital
document, Journal of Cryptology, 1991
[Ka88] Kawell, L., JR., Beckhart, S.,Halvorsen, T.,Ozzie, R.,
and Greif, I. Replicated document management in a group com-
munication system., In CSCW. Chapel Hill, NC, 1988
[Ka03] Kang B., Wilensky R., and Kubiatowicz J. The hash
history approach for reconciling mutual inconsistency, In Pro-
ceedings of ICDCS, 2003
[Ki92] Kistler J. J. and Satyanarayanan M., Disconnected op-
eration in the coda file system. ACM Trans. on Computing
Systems, 1992
[Ku00] Kubiatowicz J., Bindel D., Chen Y., Eaton P., Geels D.,
Gummadi R. Rhea S., Weatherspoon H., Weimer W., Wells C.,
and Zhao B. OceanStore: An Architecture for Global-scale
Persistent Storage, In Proc. of ASPLOS, 2000
[Ma02] Maniatis P. and Baker M., Secure History Preservation
Through Timeline Entanglement. In Proc. of Usenix Security
Symposium, 2002
[Ma05p] Maniatis P.,Roussopoulos M., Giuli T., Rosenthal D.,
Baker M., The LOCKSS - Peer-to-peer digital preservation
system. ACM Trans. on Computing Systems, 2005
[Ma05d] Malkhi D. and Terry D., Concise Version Vectors in
WinFS. In Proc. of DISC, 2005
[Me87] Merkle R., A digital signature based on a conventional
encryption function. In C. Pomerance, editor, Crypto’87, 1987
[Mu95] Mummert, L. B.,Ebling,M. R., and Satyanarayanan,M.
Exploiting weak connectivity for mobile file access, In 15th
SOSP, Copper Mountain, CO. 143–155., 1995

[Pa83] Parker Jr.D., Popek G., Rudisin G., Stoughton A.,
Walker B., Walton E., Chow J., Edwards D., Kiser S., and
Kline C., Detection of Mutual Inconsistency in Distributed
Systems, Trans. on Software Engineering, 1983
[Pe97] Petersen K., Spreitzer M., Terry D., Theimer M., and
Demers D., Flexible update propagation for weakly consistent
replication. In Proc. of SOSP, 1997
[Pr97] Prakash R. and Singhal M., Dependency sequences and
hierarchical clocks: efficient alternatives to vector clocks for
mobile computing systems, Wireless Networks, 1997
[Ra97] Ratner D., Reiher P., and Popek J. Dynamic version
vector maintenance, Tech. Report CSD-970022, UCLA, 1997
[Ra98] Ratner, D. H. Roam: A scalable replication system for
mobile and distributed computing, Ph.D. thesis, Tech. Report.
No. UCLA-CSD-970044, UCLA, Los Angeles, CA, 1998
[Re95] Reiter M. and Gong L. Securing causal relationships in
distributed systems, The Computer Journal, 1995
[Sa00] Saito Y. and Levy M, Optimistic Replication for Inter-
net Data Services. In Proc. of DISC, 2000
[Sa02] Saito Y., Unilateral version vector pruning using loosely
synchronized clocks, Technical Report HPL-2002, 2002
[Sa05]Saito Y. and Shapiro M., Optimistic Replication, ACM
Computing Surveys, vol. 37, March 2005
[Sc94] Schwarz R. and Mattern F. Detecting causal relation-
ships in distributed computations: In search of the holy grail,
Distributed Computing, 1994
[Se06]Seigenthaler J., Seigenthaler and Wikipedia-Lessons and
Questions: A Case Study on the Veracity of the “Wiki” concept
www.journalism.org/resources/research/reports/Wikipedia/defa
ultwiki
[Sm94] Smith S. and Tygar J. Security and privacy for partial
order time, In ISCA International Conference on Parallel and
Distributed Computing Systems, 1994
[Sp99] Spreitzer M., Theimer M., Petersen K., Demers A., and
Terry D. Dealing with server corruption in weakly consistent
replicated data systems,Mobile Computing & Networking,
1997
[Te95] Terry D., Theimer M., Petersen K., Demers A.,
Spreitzer M., and Hauser C., Managing update conflicts in
Bayou, a weakly connected replicated storage system. SOSP,
1995
[Tr99]Tridgell, A. Efficient Algorithms for Sorting and Syn-
chronization, PhD thesis, Australian National University, 1999.
[Wa83] Walker, B., Popek, G., English, R., Kline, C., and
Thiel, G. The Locus distributed operating system. SOSP, 1983
[WF06]“Database Dump Progress.” Wikipedia: The Free Ency-
clopedia. Wikipedia Foundation, 2006
[WK06] Millionth English article posted on Wikipedia, IDG
News, www.networkworld.com/news/2006/030206-wikipedia-
million.html
[Yi06] Yip A., Chen B., and Morris R., Pastwatch: A Distrib-
uted Version Control System, In Proc. of NSDI, 2006

