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Summary Hash History for Optimistic Replication  
Abstract 

The unprecedented growth of the world’s first non-profit, open-source encyclopedia has put considerable stress on the 
Wikipedia foundation, which is constantly looking for donations to support its rising infrastructure and hosting costs 
while maintaining adequate quality of service. That the public-owned content depends on a single organization’s finan-
cial fate is a major concern to many. We propose using optimistic replication to ensure that the encyclopedia content is 
preserved at multiple sites managed by different organizations. Replicating the Wikipedia database requires not only an 
efficient update exchange protocol but also a mechanism to identify the origin of update pollution or “anonymous slan-
der” as it is frequently referred to by Wikipedia users.  In order to meet these challenges effectively, we introduce the 
Summary Hash History (SHH) approach.  In this approach, each site maintains a tamper-evident update history to 
mitigate security challenges and to readily determine the exact set of updates to be transferred during peer-to-peer 
reconciliation between sites. We first implemented Basic-SHH which confirmed our intuition that SHH can be used for 
both the tamper-evident history and the efficient update exchange mechanism. However, our evaluations revealed that 
Basic-SHH is unable to guarantee convergence among replicas in scenarios involving concurrent updates. Thus, we 
developed a variant called Associative-SHH that overcomes Basic-SHH’s limitations by not only providing eventual 
convergence but also enabling convergence of concurrent updates across partitioned networks.   

1. Introduction 
Wikipedia, the world’s first non-profit, open-source en-
cyclopedia, has witnessed unprecedented growth in its 
relatively short five year existence. As of September 
2006, Wikipedia contained over 2,550,000 unique arti-
cles with more than 1 million in the English language 
alone [WK06]. Understandably, this rapid growth has put 
considerable stress on the Wikipedia foundation, which 
is constantly looking for donations to support its rising 
infrastructure and hosting costs while maintaining ade-
quate quality of service of Wikipedia content. Users are 
concerned about whether the public owned content can 
be safely guarded if only one organization supports it. 

We consider utilizing optimistic replication to col-
laboratively host the public content among large organi-
zations such as public universities and libraries. Optimis-
tic replication allows data to be replicated at various 
points (i.e., replicas) in the network [Ki92,Ra98,Sa05]. 
This would ensure that the encyclopedia content is acces-
sible at multiple organizations, eliminating the current 
dependency on a single organization. Such a decentral-
ized Wikipedia can also support its users with better ser-
vice, given that optimistic replication is a proven tech-
nology to provide high data availability and improved 
performance more effectively than a centralized server 
[Ka88,Ki92,Mu95,Ra98,Sa00,Sa05,Ku00].  

To permit efficient read and write operations, as well 
as to maximize content availability, optimistically repli-
cated systems allow users to access any individual site.  
An update to one replica needs to be propagated to the 
other replicas using pair-wise exchanges, and concurrent 
updates need to be identified and resolved during this 
reconciliation process to ensure a consistent view across 
replicas. Notably, in order to bring consistency to the 
replicas, such update exchanges require an efficient up-

date propagation mechanism that does not overload the 
network. Given that network bandwidth is still consid-
ered an expensive resource compared to disk and CPU 
resources, network efficiency has been one of the pri-
mary focuses of previous approaches to optimistic repli-
cation.  

In a peer edited distributed application like Wikipe-
dia, additional concerns arise: (i) a misbehaving (or per-
haps misinformed) users can pollute the shared content 
by introducing false information – commonly referred to 
as “anonymous slander”[Se06].  (ii) Moreover, a mali-
cious replica site can easily falsify the causal ordering 
between updates, propagate incorrect updates to replicas, 
and even halt the propagation of valid updates [Me87, 
Sc94, Sm94, Sp99], thereby preventing replicas from 
converging on consistent, correct information – update 
reordering/dropping attack.  

In order to mitigate such security challenges, each site 
must maintain or have access to a tamper-evident update 
history [Ma02, Sp99].  Such a history contains a com-
plete record of the updates that have been applied to the 
replicated content along with the causal relationships 
between such updates and is constructed such that any 
modification of the previous update history will be de-
tected at other replica sites. This ensures that (i) the mis-
behaving users (e.g., source of article slander and pollu-
tion) can be made accountable. And the tamper-evident 
history can guarantee the undo of the article pollution 
into correct previous article. Also, (ii) the misbehaving 
sites (e.g., source of reordering/dropping attack) can be 
detected through post-inspection of previous up-
date/merge history.  

Our solution to such challenges is an interesting ap-
proach to optimistic replication based on each site main-
taining a Summary Hash History (SHH) that addresses 
these requirements for (i) efficient update propagation 
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and (ii) tamper-evident update histories at the cost of 
maintaining a tamper-evident update history. With previ-
ous approach, version vector is used to provide efficient 
update propagation by figuring out exact set of deltas to 
be propagated, and a separate tamper-evident update his-
tory to ensure the correct undo and the accountability of 
the participants.  

In our proposed SHH, version vector is not needed, 
freeing from the overhead of version vector maintenance. 
SHH uses a causal history approach [Sc94] as a decen-
tralized ordering mechanism, where each site keeps a 
record of the updates that it has created and incorporated 
from other sites in the form of a secure version tree with 
SHs as version identifiers. Because it utilizes this unique 
summary hash identifier, SHH represents a tamper-
evident update history that ensures the verifiability of 
updates and enables the system to protect against mali-
cious compromise and faulty ordering through an 
undo/time-travel mechanism. Additionally, the SHH 
scheme supports efficient update propagation. During 
reconciliation, two sites exchange their SHHs, from 
which each can extract the minimal set of updates that 
need to be transmitted over the network to bring the sites 
into a mutually consistent state.  

The effectiveness of SHH-based replication was 
tested by implementing S-Sync, a directory synchroniza-
tion tool to share and synchronize files/folders between 
multiple distributed sites. With this experience we then 
built a replicated Wikipedia application (RepliWiki), 
using S-Sync as a pluggable framework. Each RepliWiki 
site periodically publishes article updates, which are ag-
gregated into a file in the shared directory. These files are 
propagated to other RepliWiki sites through S-Sync pro-
tocol. RepliWiki is currently deployed on PlanetLab 
nodes and exists to demonstrate the usefulness of the 

SHH technique in a real world application.  
However, we found two practical issues in building 

scalable, replicated systems using SHHs. First, the size of 
an SHH can grow unbounded, which can overload the 
network during reconciliation. Second, our initial imple-
mentation of S-Sync exhibited convergence problems 
when reconciling concurrent updates. 

To address this first issue, we explored protocol 
variations based on SHH, in addition to using a well-
known decentralized pruning technique. Instead of send-
ing the entire SHH or only the latest SH, we found send-
ing up to ‘k’ entries from the SHH can be beneficial and 
efficient, since it may cost the same amount to send 1 SH 
entry as to send 100 SH entries. 

The second, perhaps more serious, problem arises be-
cause our initial implementation, called B-SHH, assigned 
a new summary hash identifier to the result of the merge- 
of SHHs, when two sites reconcile. Our analyses actually 
show that this can derail the whole reconciliation process 
by creating new versions in the SHH that are continually 
propagated to other replicas. Consequently, eventual con-
vergence is not guaranteed in B-SHH. Our experiments 
not only show the detrimental affects of such entries on 
the version tree, they also demonstrate that B-SHH pro-
duces false conflicts when three or more concurrent up-
dates are merged. For instance, reconciliation between 
randomly chosen sites leads to an abundance of vacuous 
(i.e. non-data-transferring) reconciliations, in which only 
summary hashes, not data content, are transferred during 
the reconciliation process. 

These observations guided the design of our follow 
up SHH construction mechanism referred to as Associa-
tive-SHH (or A-SHH). In A-SHH, a merge identifier is a 
set of summary hashes of all previous revisions on which 
the merge is based, instead of a newly generated hash as 
in B-SHH. Further analysis has shown that A-SHH not 
only converges faster than B-SHH but also provides con-
vergence of concurrent updates even across partitioned 
networks as long as each partition received the same set 
of updates before the network partitioned. Thus, A-SHH 
is the ideal choice for large distributed applications such 
as RepliWiki. 

The rest of our paper is organized as follows. Section 
2 introduces S-Sync and B-SHH. Then Section 3 presents 
the Associative-SHH including the problems in B-SHH. 
The implementation of S-Sync and RepliWiki are dis-
cussed in Section 4 followed by the evaluation of SHH 
design and results of our PlanetLab experiment in Sec-
tion 5. Section 6 discusses the related work and we con-
clude in Section 7. 

2. S-Sync with Basic-SHH   
We first show how B-SHH version trees are constructed 
and used in S-Sync, a directory synchronization tool to 
share and synchronize files and folders among distributed 
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Figure 1: B-SHH Example. At time t1, Site X, Y and Z 
created new states S1, S2 and S3.  At time t2, Site X pulled 
S2 (i.e., delta(S0,S2)) from Site Y and deterministically 
merges the two states: S1 and S2 , creating S4 state. 
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sites. Our implementation of S-Sync furnishes the under-
lying update transfer framework used in RepliWiki. Each 
RepliWiki site periodically publishes updates to its lo-
cally stored articles, which are aggregated into files in the 
shared directory. These files are exchanged with other 
RepliWiki sites through S-Sync. 

S-Sync creates a shared space that houses files and 
directories for synchronization with other sites. S-Sync 
keeps information about versions and updated content in 
the form of local files which we call “change-sets”. 
These change-sets are exchanged during periodic recon-
ciliation between randomly selected sites. 

2.1 Definition of Summary Hash and Basic-SHH 

An SHH is a causal history using summary hashes as 
version identifiers. A version indicates a state that a rep-
lica site can create by applying the update(s), the subse-
quent changes due to content upload, and the various 
merge operations resulting in a new merged version.  

S-Sync uses summary hashes as pointers into the 
change-sets to provide auditability and traceability in 
case of malicious user attack and undo/time-travel in case 
of accidental loss of data. In such cases, S-Sync can trav-
erse the SHH version history tree to locate the changes 
that need be undone and provide users with the changes 
that precede the accidental deletion or the undesirable 
update.  
Basic-SHH: Let the summary hash Si is an identifier to 
represent a version Vi, where a version indicates a state 
of the synchronization unit. (e.g. snapshot of the shared 
directory). The identifier Si, we call, Summary Hash 
(SH), is generated as below:  
Let Hi = h(Vi), where h is a collision resistant hash func-
tion, and Sp is a Vi’s predecessor’s identifier. 
• Si = h(Sp||Hi) when Vi has a single predecessor.  
• Si = h(Sp

*||Hi) when Vi has multiple predecessors 
(i.e., Vi is created by merging multiple concurrent 

versions).  Sp* is the concatenation of multiple Sps, 
where Sps are sorted by lexicographical value of Sp.)   

For instance, as shown in Figure 1, V1’s predecessor is 
V0, thus Si is h(S0||H1).  Also, V4 is a merge of V1 and V2, 
thus S4= h(S2||S1||H2).  Please note that S2 = (048) comes 
before S1 = (DD1) in lexicographical order (048 < DD1). 
 Tamper-Evident Verification: The inclusion of prede-
cessor hashes in the summary hash is similar to that of 
Merkle’s tamper-evident hash tree [Me87] or hash chain-
ing structure [Ba92, Ha91]. Therefore, by using this sum-
mary hash as a version identifier, one can readily prevent 
various ordering attacks [Sp99]. Moreover, since the 
summary hash is collision resistant, it is computationally 
infeasible to find two different summary hash histories 
given the latest version’s summary hash. This is impor-
tant because there is a unique summary hash history as-
sociated with a given summary hash; a version’s sum-
mary hash is a compact and secure summarization of all 
the causally preceding writes. 

Furthermore, SHH achieves its tamper evident prop-
erty by signing the latest summary hash, as one can easily 
verify the previous update history by traversing the sig-
natures and matching them with the site that signed it. 
For example, to verify the summary hash S5 for version 
V5 in Figure 1, one needs to locate summary hashes for 
both S3, for version V3, and S4, for version V4, and check 
if the hash over (S3||S4||H5) matches S5. If it does, then 
one can recursively verify S3 and S4 until reaching either 
a previously verified summary hash or S0, the initial root. 

Our current implementation provides an “S-Sync 
State Reconstruction” interface with which the user can 
specify a previous state that needs to be reconstructed. 
RepliWiki utilizes S-Sync’s interfaces to trace and undo 
slanderous edits to articles.  

2.2 Efficient Update Propagation using SHH 

Efficiency in update propagation is at the heart of opti-
mistic replication [Sa05]. In S-Sync, we craft summary 
hashes in a manner that is useful both for verifying the 
version-ordering and for figuring out the exact set of 
updates to be exchanged. The SHH data structure com-
bines the modification (updates) and synchronization 
(reconciliation) histories in a single data structure, which 
is significantly simpler than those used with traditional 
version vectors and also provides a tamper-evident up-
date tree.  

2.2.1 Anti-Entropy Reconciliation with SHH 

Optimistic replication protocols are flexible with respect 
to network topology because techniques such as epi-
demic algorithms propagate updates in a reliable fashion 
even when the communication between replicas is unsta-
ble or unreliable due to network partitions [De87,Sa05]. 
To be network efficient, S-Sync propagates updates be-
tween replicas via pair-wise reconciliations [De87,Te95]. 
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Figure 2: S-Sync Protocol Details. Figure shows the varia-
tions in S-Sync protocol: Latest Hash Equal, Subset case, 
Dominance case, and Concurrent case. 
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S-Sync employs a “pull” mechanism for reconciliation. 
The site that initiates reconciliation is called the initiator 
or the “pulling” site. The source is the site that responds 
to the initiator’s request for new updates by checking if 
the two sites have any differences in their SHHs and then 
determining the summary-hashes that need to be trans-
ferred back to the pulling site. 

2.2.2 S-Sync Protocol Explained 

The S-Sync protocol, as in Figure 2, facilitates update 
exchange among replica sites using the following two 
variations. The first, called Entire SHH exchange sends 
the entire SHH during pair-wise reconciliation. The sec-
ond variation sends the latest SH first. If the source re-
quires additional SH’s to compute the dominance, the 
entire SHH can be transferred. For instance, in the first 
step of the S-Sync protocol, the initiator or pulling Site X 
sends the latest hash (SX) to the source or reconciling Site 
Y. If SX is not equal to SY (Site Y’s latest hash) then Site 
Y asks for the entire SHH from Site X. With the entire 
SHH at Site Y, the version dominance can now be de-
termined by checking whether Site X’s latest version 
(SX) appears in its SHH. In a typical reconciliation, 
where Site X with latest hash SX pulls from Site Y with 
latest hash SY, there can be one of the four possible cases 
detected at the source, as also shown in Figure 2: 
Latest-Hash-Equal Case: The reconciling sites may 
have the exact same updates either because both sites 
have received the latest updates or because there have 
been no recent updates in the system. If the latest hashes 
(SX and SY) of both sites are equal, this implies that the 
sites have the same content. If this is the case, nothing 
needs to be transferred back to the pulling site.  
Subset Case: The pulling site may dominate the source, 
in which case the source site’s version-tree is found to be 

a subset of the initiator’s.  
Dominance Case: The initiator’s latest hash may already 
exist in the source’s SHH, in which case the source site 
dominates. Having established dominance, the source-
site (Site Y) must next determine the updates to be trans-
ferred back. To do so, the source-site calculates the dif-
ference between the two sites, referred to as the deltas. 
  The updates to Site Y’s SHH are captured in, what we 
call an “SHH Delta”. Since the SHs are simply the identi-
fier for a version the changes in the versions are bunched 
together in a “Content Delta”. Site Y transfers these del-
tas back, which are then applied using either B-SHH or 
A-SHH, to bring the initiator’s state to the source’s cur-
rent state. 
Concurrent Case: A concurrent case is where the rec-
onciling sites may have common summary hashes in their 
respective version trees but have different latest hashes. 
For instance, Site X’s SHH and Site Y’s SHH are con-
current when these two SHH trees have some SHs in 
common but the latest hashes (SX and SY) are not the 
same. In S-Sync protocol, Site Y calculates the SHH and 
Content Deltas, to be transferred back to Site X, where 
these deltas are merged. 

2.2.3 Delta Calculation in SHH 

The SHH Delta is obtained by traversing the SHH tree 
from top to bottom in a topologically sorted manner, this 
delta excludes the nodes which already appear in the 
other SHH tree. The following is a simple technique for 
computing the SHH Delta. 
SHH Delta = Edges containing topologically sorted 
nodes in SHHY - topologically sorted nodes in SHHX, if 
appears in SHHY -------- [I] 

The edges in the SHH tree contain the actual data 
content. Thus, traversing the version tree for the edges 
provides the required updates in the system and corre-
sponding version changes.  
Content Delta = Edges for the Nodes in SHHY with ex-
actly one parent - Edges on Nodes in SHHX with exactly 
one parent if appears in SHHY -------- [II] 

Upon receiving the deltas, the initiator performs one 
of the following two steps: (1) apply the delta if the 
source site dominates or (2) merge the delta if the sites 
are concurrent.  

3. Associative-SHH 
We wrote a SHH-Visualizer utility to visualize the com-
plete SHH version tree, from which we found that S-
Sync with B-SHH has a detrimental impact on the recon-
ciliation protocol and cannot guarantee eventual conver-
gence when reconciling concurrent updates. We show the 
visualization results for vacuous reconciliations in the 
following sections.  

3.1 Vacuous Reconciliation of Basic-SHH  
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Figure 3: B-SHH creates new identifier for each merges in 
this case S7, S8 even if the merge will produce the same 
deterministic result. Thus, B-SHH may not converge in 
some unfortunate merge paths as above. However, the A-
SHH, shown in {}, will be able to determine the equality in 
any arbitrary sequence of merges. 
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Our experience with B-SHH shows that it creates a large 
number of merged summary hashes, in the SHH tree, due 
to the out-of-order (or random) reconciliation among 
replica sites. We attribute this behavior to the flaw in the 
construction mechanism of B-SHH which creates a new 
summary hash for every merge. During the reconciliation 
process the sites end up transferring these intermediate 
summary hashes but no real content is transferred. It is 
therefore fitting to label such a reconciliation as vacuous 
or non-data transferring.  
The obvious fix for the above problem is to avoid vacu-
ous reconciliations, which also happens to be the primary 
motivation for developing A-SHH. Experiments and fur-
ther analysis show that the A-SHH construction mecha-
nism consumes an order of magnitude less bandwidth 
than the B-SHH by avoiding these vacuous reconcilia-
tions. The results are discussed in the evaluation section. 

Figure 3 shows vacuous reconciliation and how these 
intermediate version identifiers create a vacuous domi-
nance situation. For instance, when Site Y calculates the 
SHH Delta and Content Delta, as described earlier, it 
determines that there is no content that needs to be sent 
back to the pulling Site X. The SHH Delta in this case is 
{(S2,S8), (S6,S8), (S7,S9)}. This reconciliation synchro-
nizes both sites in terms of their SHH trees without send-
ing the actual content deltas. The other possible recon-
ciliation scenario is vacuous concurrence, where the sites 
have the same content but a different latest hash, which 
leads to the flagging of false conflicts when there are 
none. A-SHH on the other hand averts the need for any 
non-data transferring reconciliation due to its set-based 
design, thus providing faster convergence while consum-
ing far less bandwidth than B-SHH.   

3.2 Improvement in A-SHH over B-SHH 

A-SHH’s summary hash construction follows one of the 

following distinct approaches, as illustrated in Figure 4. 
If the version change is due to; 
• Content Update, the construction follows the B-SHH’s 

construction, 
• Content Merge, it uses a set based concatenation. 

In the case of Content Merge, the summary hash (Si) 
is a union of Si

’s parents in a lexicographically sorted 
order as we see in Figure 4. We refer to the latest hash in 
the A-SHH construction mechanism as the “latest-hash-
set”, shown as {S1, S2, S3}. As given in Figure 4, the up-
dates C1, C2, C3 show the updates on the base version, 
V0. Consequently, C1 brings the base version V0 into V1 
(V0 V1). The edges form due to this content update and 
thus are always representative of a version update and 
actual data changes in the system. The global SHH keeps 
information about these version transitions and the up-
date information. Notably, all updates lead to states with 
only one parent, e.g., S1, and S2 and states with more than 
one parent indicate a merge operation, e.g., states {S2, 
S1}. 

3.3 Eventual Convergence Guarantee in A-SHH 

The fundamental property of optimistic replication de-
sign is to achieve consistency across replicas: that is, all 
sites move towards eventual consistency [Sa05]. Replicas 
held by two replica sites may vary in their content be-
cause of the order in which they receive and process up-
dates. As the replicas try to achieve consistency by ex-
changing latest updates, it is necessary to identify up-
dates and their order of arrival in order to avoid/detect 
replica inconsistency. Having a technique that can re-
solve inconsistencies due to merges based on 
faulty/incorrect ordering is also desirable.  

Merge Properties in SHH: To correctly identify all 
inconsistencies that occur due to an update or an out-of-
order merge, it is imperative to first identify the merge 
operation and subsequently develop techniques to facili-
tate identification of the correct update-order. Please re-
call that any version tracking mechanism in optimistic 
replication should be able to assign the same version 
identifier to the final merged content if the merges are 
deterministic [Sa05]. We extend this property and intro-
duce two additional merge properties: commutative and 
associative merges. The individual merge in SHH can 
thus have one or more of the following merge properties: 
Deterministic, Commutative, and/or Associative. Our 
approach to correct update-ordering and version-tracking 
for eventual convergence, in view of concurrent updates, 
follows these merge properties. We first define these 
properties and then illustrate how SHH incorporates them 
in its construction mechanisms.  
•D-Merge: Merge, m(x,y), is said to be deterministic if it 
produces the same merged result from inputs x and y, 
irrespective of the site that performs the merge operation. 
•C-Merge: Merge, m(x,y), is commutative if m(v1,v2) 
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Figure 4: Associative-SHH example. The merged state is 
represented as a set of predecessors' identifiers. At time t3 
when Site X merges S1 and S2, the merged state is repre-
sented as a set {S1, S2}. 
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produces the same merged output as m(v2,v1). E.g., A+B 
= B+A. 
•A-Merge: We call a merge operation associative if 
m(v1,m(v2, v3)) produces the same merged result as 
m(m(v1, v2), v3) .  E.g., A+(B+C) = (A+B)+C. 

B-SHH assigns different version identifiers, 899 and 
A16 in Figure 5, on sites X and N respectively, even 
though the data content (i.e., X6) is the same on both the 
sites. The assignment of different version identifiers for 
the same merge operation is made because B-SHH does 
not handle the associative properties. This also results in 
flagging the merge as conflicting which is obviously a 
false-conflict. However, the B-SHH construction cor-
rectly handles the deterministic and commutative merge 
properties as it creates a new summary hash for all newly 
introduced updates, be they Content Updates or Content 
Merges. However, A-SHH, in Figure 5, assigns the same 
version identifiers {0A3, 587, 5BC} on both the sites by 
correctly capturing D-Merge, C-Merge and A-Merge. 
The A-SHH construction mechanism does this by taking 
the union of lexicographically sorted summary hashes of 
the parent’s when all the merges are DCA. A-SHH is 
more efficient than B-SHH in managing the summary 
hash and merging updates with other sites.  

The merged summary hashes capture the meta-
information of the merge operation, including the order 
of merge and if it meets any of the D, C, or A merge 
properties. However, should the merge be non-DCA, 
both the B-SHH and A-SHH flag the merged summary 
hash and report it as a potential conflict. The conflict 
resolution in both SHH construction approaches assumes 
knowledge of some kind of application-specific seman-
tics.  

Decentralized Convergence in SHH: It is assumed 
that identical versions with the same content will be 
produced at different sites, possibly as a result of merges 
between reconciling sites.Indeed, such an occurrence can 
be frequent when the same deterministic merge 

procedure is used to resolve the same set of conflicting 
updates. SHH will assign the same version identifier if 
the identical content is independently produced from the 
identical histories. Interestingly, this property of SHH 
allows distributed replicas to converge even across 
partitioned networks. For instance, in Figure 5, a 
comparison of B-SHH, A-SHH, and Bayou–VV [Te95] 
show how each of these techniques will identify and 
assign version identifiers. 

The merge operation on different replica sites can as-
sign the version identifier independently without any 
communication; it is possible for a site in each parti-
tioned network to assign the same version identifier. 
However, this is difficult to capture in a decentralized 
setting. Therefore, unless two sites communicate with 
each other, the sites cannot recognize that each site has 
independently produced an identical version. If different 
content version identifiers are not assigned to resolve this 
problem then SHH will report concurrent update, thus 
introducing possible conflict in the system. We refer to 
such a scenario as false conflict cases. Unfortunately, 
such false conflicts have a vast cumulative effect on any 
future descendant versions. For example, if V1 and V2 are 
considered in false conflict, then all the versions that are 
based on V2 will be in conflict with V1. This false con-
flict will cumulatively create further false conflicts 
among descendant versions. In contrast, if V1 and V2 are 
not in conflict, then all the versions that are based on V2 
will dominate V1. This cumulative false conflict not only 
incurs the unnecessary overhead of running the Conflict 
Resolver, but can also create an undesirable merged re-
sult among descendant versions.  

Figure 5 shows three concurrent updates in the sys-
tem. Since these updates are on different files, the merges 
produced by them are by definition deterministic, com-
mutative and associative, as discussed earlier. The final 
output produced by merges (M1, M3) and (M2, M4) on 
Site X and Site N should therefore be the same in terms 
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Figure 5: Example of convergence across partitions. Convergence across Partitioned Network Compares B-SHH, A-SHH, 
and Bayou-VV. The Sites L, M and N receive the updates (C1, C2 C3) by reconciling with sites X, Y and Z respectively, before 
the partition. Since the updates were made of different files, the merges produced by them are commutative and associative. 
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of their data content. We also show the affects of associa-
tive merge property of A-SHH in terms of its conver-
gence across partitioned networks in Figure 5. It is im-
portant to note that the A-SHH was designed to converge 
faster without creating any false conflicts across parti-
tioned networks. However, B-SHH promises an identical 
version identifier only in the case where either the parti-
tion or the converging site has received the updates pre-
viously, and only when the sites attempt convergence of 
two deterministic concurrent updates.  

A-SHH, on the other hand handles any number of de-
terministic concurrent updates. For instance, update rep-
resented as A, B, and C will be merged as: A+(B+C) = 
(A+C)+B = (A+B)+C. This guarantees the identical final 
version identifier regardless of the order of the recon-
ciliation and network partitions. This is accomplished 
through “set” based concatenation of its lexicographi-
cally sorted parents. In this way, by correctly resolving 
the different partitions, A-SHH guarantees that no false 
conflict will occur in the system. B-SHH, on the other 
hand, mistakenly treats these two versions 899 and A16 
as concurrent versions on Sites X and N respectively (see 
Figure 5) and therefore will require a vacuous reconcilia-
tion before full convergence can take place.  

4. Overcoming SHH Overheads  
Any attempt to collate causal histories into a single data 
structure significantly affects its size [Sa05]. In the same 
respect, the size of the SHH grows in proportion to the 
number of update instances in circulation. Another im-
portant challenge for our S-Sync protocol is to conserve 
the bandwidth consumption, either by reducing the size 
of the SHHs being sent over the network or by restricting 
the number of round trips. To address these issues, in 
addition to using a well-known decentralized pruning 
technique we also explored a protocol enhancement to 
the S-sync protocol.  

4.1 Acknowledgement List for Log Pruning  

As it is based on a causal history, the size of the SHH can 
be considered unbounded. To be network efficient, SHH 
need to be pruned periodically. We take a common ap-
proach used in other optimistic replication techniques 
[Go92, Sa02]. We leverage SHH’s reconciliation process 
for both tracking the update and transferring its acknowl-
edgement receipts. An acknowledgement receipt estab-
lishes, for a given version, which replica sites have re-
ceived that particular version.  

To provide an audit trail for possible malicious up-
dates and to provide undo guarantees against any unin-
tended deletes, it is necessary to assure that at least one 
site (called the archiving site) in the system maintains the 
complete history for any future verification. The ar-
chiver-site is assumed to have a fairly large storage to 

keep the update history along with the acknowledgement 
receipts from other sites.   

A site can safely delete the update histories and their 
change-sets up to state SX, if the archiving site has re-
ceived all update up to SX

. If the archiving site is not 
available for an elongated period, each site can make its 
own pruning decisions based on the acknowledgement 
receipts that it has collected.  We assume that each site 
will use the global membership information that it has. 
(i.e., participantsList.txt file in S-Sync implementation) 

The update receipts are propagated as part of the 
shared directory in S-Sync. A special shared folder called 
“AckList” collects the summary hashes that were signed 
by the receiving site. The anti-entropy reconciliation syn-
chronizes the AckList folders across the sites, exploiting 
the acknowledgement-receipts collected at other sites. 
Sites can independently arrive at the pruning decision as 
below: 
(a) Prune SHHs up to version Vi if the archiving site has 
received this state and delete the corresponding change-
sets after the SHH is pruned.  
(b) Prune SHHs up to version Vi, provided that all sites 
have received that version based on the current acknowl-
edgement list, if the archiving site is not reachable. 

4.2 Optimization in S-Sync Protocol: k-SHH 

Our initial attempts at optimizing the reconciliation pro-
tocols were based on the decision to transfer either the 
entire SHH at once or the latest SH first and the entire 
SHH in the next step. The S-Sync protocol targets the 
bandwidth consumption issues by reducing the number 
of round trips by sending the entire SHH in the first step. 
However, sending only the latest hash in the first step 
and then sending the entire SHH, if needed, in the second 
step consolidates on bandwidth. The intuition for choos-
ing the “latest hash first” variation is to avoid sending the 
entire SHH when sites are already or almost in sync 
which, in turn, reduces the traffic over the network. 

We know that transferring 20 byte SH will have the 
same overhead and bandwidth expense as sending a fixed 
additional number of SHs. Thus, instead of sending the 
entire SHH or only the latest SH, we found sending up to 
‘k’ entries in SHH to be most efficient, since it may cost 
the same amount of network delay to send 1 SH entry 
and 100 SH entries.  

In case where the pulling site dominates the source or 
has a concurrent update, the pulling site will end up send-
ing the entire SHH, after the initial exchange of latest 
SHs exchange.  If the pulling sites send 100 SH entries, 
the source may be able to find the common ancestor and 
send back the needed delta to the pulling site.  In this 
case, the entire SHH transfer is not needed.  However, in 
cases where the common ancestor cannot be found using 
100 SH entries, the entire SHH transfer is required in 
order to find the common ancestor and the delta.  
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5. Evaluation 
In this section, we prove that the SHH data structure is 
capable of providing an efficient and reliable optimistic 
replication mechanism for distributed applications. Thus, 
our focus is primarily on testing the fundamental proper-
ties of A-SHH. Through our experiments and simula-
tions, we demonstrate that A-SHH: 
1. Prevents unbounded replica divergence, 
2. Shows an order of magnitude improvement in con-

vergence speed by limiting the number of vacu-
ous/non-data transfer reconciliations, 

3. Tolerates divergence among disconnected nodes, yet 
provides convergence across partitioned networks,  

4. Performs comparable to the traditional version vector 
approach in dealing with multiple concurrent updates. 

 
SHH Implementations: The SHH version tree and other 
data-structures, used in the development of S-Sync Pro-
tocol, are implemented in Java. We, extensively, use 
Java's Hashtable functionality to maintain the version 
tree’s internal reference and collections. The “dominance 
information” and “successor-predecessor (parent-child)” 
relationships are maintained as a key-value pair in a 
separate hash table. Such a data facilitates traversal dur-
ing dominance calculation based solely on the latest 
hash. Further, a pointer is maintained for each Content 
Delta and its corresponding summary hashes.  

Please note that the Content Delta keeps track of 
changes made to the S-Sync’s shared-folder, where any 
updates to a file or addition/deletion of files are recorded. 
Whereas the SHH Delta captures the changes in the SHH 
tree, affected by the updates made to the shared-folder. 
Therefore, a delta or the change-information is an effi-
cient mechanism to avoid transferring a lot of content 
across the network [Tr99]. Since, SHH stores the delta 
information in memory, the SHH Delta and Content 
Delta are calculated by recursively traversing the 
Hashtable in a topologically sorted [Co01] order as de-

scribed in Section 2.2.3. 

5.1 Evaluation Methodology 

We developed the SHH-Simulator to aid in the evalua-
tion and simulation of the SHH protocols. The SHH-
Simulator has three components: “Replica Site Selector,” 
“Update Injector,” and “Shared Object.” Using the Rep-
lica Site Selector, a replica site is made to reconcile with 
another randomly selected site. After reconciliation, the 
Update Injector is then used to choose and implant new 
updates at a randomly selected replica site, thus simulat-
ing a real world arbitrary order of update among replicas. 
These randomly generated updates can be clean or con-
current depending on the state of each replica site. We, 
interchangeably, refer to concurrent update as non-
conflicting updates, as these updates are made to differ-
ent files on different replica sites.  

Further, a Shared Object is the unit of replication, for 
instance the “shared directory” in the case of S-Sync. At 
predetermined time intervals the reconciling site ran-
domly selects a replica site and exchanges the version 
information based on the reconciliation scheme.  

To aid in consistency across experiment runs, the ran-
dom order for each site is first logged and then enforced 
by the SHH-Simulator during all subsequent simulation 
runs. This is done to aid in validating the results against 
simulations carried out on a local desktop machine. We 
found that the results follow the same pattern apart from 
obvious differences in the reconciliation times due to 
PlanetLab nodes having varying wide area latencies. 

5.2 Update Propagation & Divergence Control 

We first show through simulation that while the number 
of states generated by the B-SHH techniques are un-
bounded as the number of concurrent updates increases, 
the performance of SHH and Bayou-VV remain rela-
tively constant. We then demonstrate the efficient update 
propagation and divergence control properties of A-SHH 
and compare the variations in SHH protocol construc-
tion.  

We studied several parameters to understand the S-
Sync reconciliation protocols, namely the: (i) reconcilia-
tion scenarios (e.g., Dominance case, Latest Hash Equal 
case, Subset case and Concurrent case), (ii) size of SHH 
data structure,  the number of SHH states being main-
tained and stored as key-value pairs, and (iii) speed of 
update convergence among replica sites.  

First, to determine the version dominance between 
the point of update injection and replica convergence, S-
Sync protocol transfers either the latest summary hash or 
the entire hash history. As described earlier, efficiency in 
update propagation is considered an important aspect of 
optimistic replication. Therefore, to be network efficient 
we compare the number of bytes transferred using each 
of the replication schemes.  
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Figure 6: Effective Reconciliation Steps in S-Sync. Our 
experiments show that the B-SHH construction mechanism 
has to perform 76 effective reconciliations compared to just 
39 for A-SHH when converging 4 concurrent updates 
among 16 replica sites. 
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The term “reconciliation scheme” is used to refer to 
the combination of SHH construction and the reconcilia-
tion protocol, e.g., B-SHH with entire SHH and A-SHH 
with entire SHH, as shown in Figure 6. We measure “ef-
fective reconciliations”, that is, the reconciliation scenar-
ios where sites update their SHH version tree. For ex-
perimental purposes we ignore the reconciliation 
schemes of: latest-hash-equal-case and subset-case, as 
these schemes only exchange the top hash and no sum-
mary hash. As it is, these vacuous hashes do not affect 
any change in SHH tree. 

The results below were obtained using the SHH-
Simulator. The simulations were carried out with 16 rep-
lica sites and 4 concurrent updates injected on randomly 
selected sites at the beginning of the simulation. These 
non-conflicting updates are injected in the system using 
an Update Injector program. Further, the replica sites are 
configured to start the random anti-entropy process every 
30 seconds. Finally, we experimented with the Basic and 
Associative SHH implementations, sending entire SHH.  

5.2.1 Reconciliation Scenarios 

In our study of SHH’s properties, we experimented with 
several reconciliation schemes that exhibited varying 
degrees of success with respect to scalability and per-
formance. We identified six reconciliation scenarios, in 
Section 3.1. As discussed, the vacuous cases indicate 
non-data transferring reconciliations where only the latest 
summary hashes are exchanged to compute a dominance 
relationship. The variations in reconciliation schemes 
stem from the evaluation requirement for the most effi-
cient SHH exchange. 

Figure 6 shows B-SHH has to perform 37 vacuous 
reconciliations and a total of 76 effective reconciliations 
before it converges, as compared to the 39 effective 

reconciliation steps required for A-SHH to converge. 
Obviously, more reconciliation steps translate into higher 
bandwidth consumption; consequently B-SHH with 
Entire SHH exchange shows an order of magnitude 
increase in bandwidth usage.  

After experimenting with the summary hash history 
exchange across 16 sites on PlanetLab, we found that the 
traditional measure for exchange does not effectively 
prove the overheads of reconciliation schemes. Thus, to 
show the reconciliation scenario breakup we use an 
epoch range. An epoch signifies a cycle where all replica 
sites in the system complete reconciliation at least once 
among all their peers. The epoch ‘1’ indicates that all 
replicas have reconciled at least once. However, this does 
not mean that the sites were able to resolve all dominance 
relationship, which might take more steps to accomplish 
as updates might not have been propagated across the 
system during the first anti-entropy sweep.  

As shown in Figure 7, the experiment starts when all 
replicas have the same initial state. We then introduced 4 
concurrent updates at randomly selected sites from a pool 
of 16 sites. At the start of the experiment (i.e. epoch 
range 1 to 2), we observed more dominance and concur-
rence cases while the sites were busy collecting the actual 
changes (i.e. content deltas). However, during the epoch 
range starting from 3 to 12, we notice changes resulting 
from the two different SHH constructions and attribute 
them to the manner in which A-SHH and B-SHH con-
structions resolve version conflicts. We found that the B-
SHH with Entire SHH exchange reconciliation-scheme 
performs a significantly large number of vacuous recon-
ciliations to synchronize the SHH trees, by continuously 
exchanging SHH Deltas implying that only the summary 
hashes are exchanged. Note that the SHH Deltas are rela-
tively small in size as compared to content deltas, which 
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Figure 7: Reconciliation Scenario in Basic and Associative SHH. The experiment starts at a quiescent point when all 16 sites 
are at the same state. At this point, four concurrent updates are injected at epoch time 0. Both the B-SHH and A-SHH recon-
ciliation schemes encounter the same number of dominance and concurrence cases when the sites start pulling the data (i.e., 
actual exchanges) in the first epoch range (1 to 2) but as the time progresses, B-SHH encounters a lot of vacuous reconciliations 
and thus takes more time to converge than A-SHH. 



This work is under review at Usenix Annual Technical Conference, 2007 (Not for distribution) 

- 10 - 

of course depends on the number and size of updates 
published at the replica sites. 

5.2.2 Number of States and Convergence Issues 

In comparing the number of SHH states; (i.e. the number 
of SHH states in the Hashtable), for the same experiment, 
we found that the number of SHH states in B-SHH were 
twice as many compared to A-SHH (18 vs. 9). This dif-
ference can be attributed to an important design decision 
in A-SHH construction, where every new successor state 
is a set based concatenation of all the causally preceding 
parents. This ensures that even out-of-order updates and 
random reconciliations produce the same version identi-
fiers and no intermediate and vacuous states. Thus, A-
SHH converges faster than B-SHH and furthermore, 
guarantees the convergence even across partitioned net-
work. This is contingent on the fact that the updates were 
transferred before the network partition occurred.  

We compare B-SHH and A-SHH in terms of the 
number of intermediate states generated in a completely 
random anti-entropy environment. With the increase in 
number of replicas, B-SHH tends to create an infinite 
number of intermediate states even with a very small 
number of updates. For instance, experimenting with 
only three concurrent updates, B-SHH takes an exponen-
tial leap in Figure 8. We attribute this to the fact that 
every merge in B-SHH creates a new state, and continual 
reconciliation and subsequent merges create a very high 
number of such states. A-SHH, on the other hand with 
three concurrent updates and 16 replicas, reaches a stable 
upper bound with number of intermediate state remain 
constant thereafter. This, we believe, is promising be-
cause we now know we can guarantee convergence. To 
further verify, we introduce five concurrent updates, the 
number of states in A-SHH mechanism slowly inches 
upwards and subsequently stabilizes when the numbers 
of simulated sites are increased to 512, as shown in Fig-

ure 8. 
The convergence properties of SHH is tested and the 

replica convergence rate is plotted, in Figure 9. Here, we 
also draw a comparison of SHH with traditional version-
vector approaches. The effective reconciliations per site 
is compared with the number of sites converged. The 
coordinate (6, 14) represents 14 converged sites with at 
most six effective Reconciliations. Importantly, some of 
the sites could have converged in less than six reconcilia-
tion steps. For instance, in the case of the A-SHH proto-
col all 16 sites converge after 7 effective reconciliations.  

5.2.3 Reconciliation Protocols and SHs Exchanged  

The A-SHH-Latest Hash Protocol reconciliation scheme, 
in Figure 10, achieves better performance in terms of 
data-size exchanged. Note that when the A-SHH Entire 
SHH protocol does not perform any vacuous reconcilia-
tion, its performance is closely comparable to B-SHH 
Entire SHH and B-SHH Latest Hash protocols. This is 
because each of these reconciliation scheme share the 
entire SHH version tree per reconciliation.  

To determine the version dominance from the point 
of update injection and replica convergence, in Figure 10 
we show the comparison of all four reconciliation 
schemes in terms of size of data transferred in the first 
step and the compound steps for the Entire SHH or Lat-
est Hash Protocol respectively. The amount of bytes in-
cludes pulling site’s latest hash, both the sites IDs and 
site’s entire SHH & RMI callback handle, depending on 
the protocol variation. 

To further improve on the Latest Hash Protocol 
which sends the entire SHH in the second step, we con-
jectured that if the sites are not totally out of sync (i.e. the 
difference in terms of states among their SHH trees is 
less than a certain threshold value which we refer to as 
k), sending ‘k’ SHH states in the second step would be 
enough to determine the version dominance, thereby 
avoiding the need for sending the entire SHH on the 
other side in the second step.  

To determine the optimal k size, we attempted send-
ing the varying number of SHH states over PlanetLab 
with varying latency ranging from 0.2 ms to 92 ms and 
found that it takes almost the same amount of time to 
send up to 100 SHH states. Thus, the protocol tweak 
from Latest Hash then Entire SHH to Optimized Latest 
Hash Protocol (latest hash then k number of SHs then 
Entire SHH) appears adequate assuming the sites are not 
out of sync by more than k SHH states.  

5.2.4 Tamper-evident Update History 

A tamper-evident update history has attributes that are 
exploited for update verification and version-roll-back 
(time travel and undo) capability. The SHH verification 
time involves a Depth First Search on the SHH tree from 
the latest hash to the initial state. The time-travel/undo 

0

10

20

30

40

50

4 8 16 32 64 128 256 512

Number of sites

N
um

be
r o

f s
ta

te
s

B-SHH (with 3 Concurrent Updates)

A-SHH, Bayou-VV (3 Concurrent Updates)

A-SHH, Bayou-VV (5 Concurrent Updates)

 
Figure 8: Comparison of number of SHH States in B-
SHH and A-SHH. This graph compares the number of 
SHH states generated in B-SHH and A-SHH, in a com-
pletely random anti-entropy environment. With an increase 
in the number of sites, B-SHH tends to reach an infinite 
upper bound even with just 3 concurrent updates in the 
system. The A-SHH construction mechanism slowly inches 
towards its defined upper bound, in this case, 8 states for 3 
updates and 32 states for 5 updates. 
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time involves locating the change-sets by performing a 
topological sort between the initial and the chosen state. 
DFS and topological sort times for the Hashtable contain-
ing 1000 entries have been found to be less than 100ms. 

5.3 RepliWiki Trace Replay on PlanetLab 

SHH is used as the underlying mechanism to disseminate 
and reconcile article updates published to the RepliWiki 
web application on various PlanetLab nodes. To observe 
the divergence, efficient update propagation, and conver-
gence benefits in a deployable environment, we con-
ducted a number of experiments that simulated article 
contributions for a 24 hour period between 4 nodes on 
PlanetLab. 

We obtained the data necessary for this experiment 
by downloading the entire database dump from 
Wikipedia’s English Language Archive Site [WF06] and 
extracting a full day’s trace that occurred between April 
1, 2005 00:00:00 and April 1, 2005 23:59:59. We 
determined that there were 5614 unique updates which 
occurred on April 1st, 2005 so we randomly assigned 
1516, 1387, 1464, and 1247 to each of the four Planetab 
nodes.  To do this, we created a RepliShuffle program 
which expects a file containing Planetlab hostnames and 
distributes them among the Trace table for exporting to 
each of the Planetlab. We then created the 
RepliTraceLoader program which replays the trace by 
simulating users creating updates on each of the four 
PlanetLab nodes at the time at which the update actually 
occurred.  By default, the RepliTraceLoader program 
takes a full 24 hours to run; however, we implemented a 
multiplier feature so that the experiment could be sped up 
or slowed down while maintaining the time ratio between 
article updates so as not to skew the experiment. 

Our reason for extracting Wikipedia’s database into 
our proprietary format was primarily to eliminate primary 
and foreign key references which are difficult to manage 
in a distributed environment. By concentrating only on 
the relevant aspects to our prototype application (i.e., 
Title, Author, Hostname, Timestamp, and Description) 
and eliminating all key references, data can thus be easily 
exported and imported from the database between nodes. 

As discussed, we use S-Sync to disseminate and rec-
oncile Wikipedia article updates between the 16 Planet-
Lab nodes. Here, the S-Sync protocol is used only to 
publish the articles to other sites as it is the job of our 
RepliDriver program to export updates relative to each 
domain while importing updates exported from other 
domains and made available via S-Sync. The RepliDriver 
program is run as a cron job which exports updates in 
XML files relative to each domain. This cron job also 
publishes these updates in S-Sync for dissemination, and 
imports updates exported from other domains that are 
also disseminated via S-Sync. This cron job was run on 
each domain periodically throughout the 24 hour experi-
ment. Notably, in RepliWiki, every modification to an 
article is treated as a new update that is appended to an 
existing set of modifications, thus the merges of concur-
rent updates are always associative and commutative. In 
Figure 11, we show the change in the summary hash his-
tory size when the RepliTrace program is run across four 
nodes from the 24 hour trace. The four sites W, X, Y and 
Z individually injected concurrent updates into the sys-
tem every 5 minutes. It shows that the size of summary 
hash history at each node increases as the sites are merg-
ing concurrent updates. Once the concurrent updates are 
collected at every site, the size stays constant until next 
updates are introduced in the system. The anti-entropy is 
carried out every 30 seconds. Every node publishes one 
update every 5 minutes (i.e., every 10th anti-entropy cy-
cle).   

The results in Figure 12 validated our intuition to re-
think the design decisions of B-SHH’s construction and 
develop a method that detects and then avoid intermedi-
ate states. Hence, by incorporating the a mechanism that 
keep track of all previous summary hashes, by lexico-
graphically sorting them, we were able to see two order 
of magnitude difference in the number of states. In this 
experiment, we deployed S-Sync’s shared-folders on 32 
PlanetLab nodes and randomly injected concurrent up-
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Figure 10: Comparison of different reconciliation 
schemes in S-Sync protocol. The comparison of all four 
reconciliation schemes in terms of amount of bytes trans-
ferred before convergence. The “A-SHH with latest hash 
first” reconciliation scheme has proven, by far, the most 
efficient scheme per epoch time. 
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Figure 9: Convergence Comparison: A-SHH, like Bayou-
VV, converge faster requiring just seven reconciliations 
compared to the twelve required by B-SHH. 
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dates. Interestingly, both B-SHH and A-SHH’s perform-
ance is comparable with just 7 states to reconcile 32 
nodes. However, publishing 4 and 5 concurrent updates 
across the system shows a remarkable increase in the 
intermediate states. The nodes running the A-SHH vari-
ant converged in about 24 minutes, with 30 seconds anti-
entropy cycle. We stopped the non-converging B-SHH 
after the experiment runtime of 24 minutes. Nonetheless, 
we suspect that convergence would have taken substan-
tially longer time, perhaps in the order of hours. 

The size of A-SHH can be different from site to site 
even if they have the same latest-hash set. For example, a 
site with the latest hash set, {a,b,c}, can have 
{a},{b},{c},{a,b},{b,c}, and {a,c} in the history, while 
another node with the same latest hash set can have only 
{a}, {b}, {a,b} and {c} in the history. Likewise, Figure 
11 shows Site X and Site Z have more merge variants in 
their A-SHH histories, while Site W and Site Y are en-
joying a rather efficient merging path. Note that, A-SHH 
only collects update or revision histories and not merge 
histories   

6. Related Work 
Version Vectors are commonly used for tracking up-

date dependencies in optimistic replication [Te95, Sa02, 
Sa05, Al02, Ki92,Wa83, Gu91,Sa2]. A version vector is 
a set of counters - one for each replica site in the system 
[Pa83]. Since version vectors require one entry for each 
replica site, the size of the version vector grows as the 
number of replica sites increases. This has the potential 
to not only limit scalability in terms of the number of 
nodes that the system can accommodate, but also entails 
some additional overhead in updating version vectors in 
the event of site additions/deletions.  In order to provide 
the entry-wise comparison in version vectors, the entries 
for newly added sites have to be propagated to other rep-
lica sites and the deleted sites have to be removed from 

the version vectors [Al02,Pr97,Ra97]. Bayou 
[Te95,Pe97] provided an elegant solution to this problem 
by incorporating group membership change information 
directly in its version vector-based replication protocol.  
However, an SHH need not be affected at all by site ad-
ditions or deletions. 

Version vectors are vulnerable to various attacks on 
decentralized ordering because each entry in the version 
vector summarizes the causal relations to a number, with-
out preserving enough information for others to prove the 
correctness of the causal ordering histories. Thus, it is 
easy for a malicious node to propagate incorrect informa-
tion to all replicas by falsifying the decentralized order-
ing state. Another drawback to version vectors concerns 
accidental loss of data.  For example, when the historical 
ordering of versions is altered, any attempts to undo cor-
rupted updates may “restore” versions based on corrupt 
data or cause an excessive number of valid updates to be 
discarded [Ma02, Re95, Sm94, Sp99]. 

Spreitzer et al. [Sp99] designed a countermeasure to 
deal with server corruption in Bayou.  Like S-Sync, the 
proposed solution offers both efficient update propaga-
tion and tamper-evident update histories. The local up-
date is signed by the replica site that initiates the update 
to ensure that its contents cannot be altered by corrupt 
servers. The server that accepts the update then crypto-
graphically chains it to the previous update accepted by 
the same server to prevent other servers from reordering 
and dropping updates. These chains are interleaved into 
each replica’s update log and update origins can be 
traced by traversing the chains.  Bayou requires per-site 
version vectors to figure out missing updates and crypto-
graphic chaining to provide tamper-evident access to its 
update logs, as well as a dependency-check mechanism 
for conflict detection.  S-Sync uses a per-site SHH for all 
of these functions, freeing itself from the version vector 
maintenance, from potentially complex log merging, and 
from specialized conflict management. Also, while the 
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Figure 11: RepliWiki trace replay run 4 planet lab nodes, 
showing that the size of summary hash history at each node 
increases as the sites are merging concurrent updates. Once 
the concurrent updates are collected at every site, the size 
stays constant until next updates are introduced in the sys-
tem. Here, A: First concurrent updates from the four sites 
collected, B: All four sites converge the first concurrent 
updates, C: Concurrent updates injected, and D: SHH size 
remains constant till new concurrent updates are injected. 
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Bayou paper presented only a paper design of the sug-
gested countermeasures, S-Sync using SHHs has been 
implemented and has been running on Planet-Lab with a 
real RepliWiki application.  

Both Bayou [Te95, Pe97] and the current implemen-
tation of S-Sync are operation-transfer systems that main-
tain and transmit records of update operations. The cur-
rent design of S-Sync keeps one SHH per site with point-
ers into a locally stored change-set. S-Sync could be used 
as a state-transfer mechanism, as in WinFS [Ma05d], by 
keeping an SHH for each file.  

PRACTI, unlike some other systems, including 
Bayou and S-Sync, sends invalidation messages between 
replicas when objects are updated. The updated contents 
are then fetched independently, for instance, when at-
tempting to read an invalid object or by using a hoarding 
program. Since PRACTI uses version vectors similar to 
Bayou, SHH can provide security benefits to PRACTI. 
Likewise, S-Sync could employ PRACTI’s efficient in-
validation mechanism in its reconciliation schemes. 

In the causal history approach [Sc94], each site 
maintains the preceding causal history (i.e., all the ver-
sions that the site has received or created). During recon-
ciliation, sites exchange their latest version and its causal 
history, from which each site can check whether or not 
one version appears in the other’s causal history (e.g., 
Version X is a revision of version Y if Y appears in X’s 
causal history). Since the causal history does not require 
one entry for each replica site as in version vector, causal 
history approaches in general readily support dynamic 
membership changes. Unfortunately, since the size of the 
causal history grows in proportion to update instances in 
the system, the network bandwidth can be saturated by 
the continual exchange of unbounded causal histories.  

Although the concept of causal history is not new 
[Sc94], this paper presents a novel, practical construction 
that meets applications’ security needs and relates our 
experiences evaluating a real implementation.  Our pre-
vious work on Hash History [Ka03] produced a causal 
history implementation which used the cryptographic 
hash of version content as a version identifier to deter-
mine dominance for state-transfer reconciliation. Unlike 
S-Sync in this paper, this previous design required a hash 
history for every shared object. This mechanism also 
used an epoch number (a counter maintained at each site 
for each version) to distinguish the current version from 
the previous versions with the same content. Unfortu-
nately, this epoch number may or may not provide order-
ing correctness for some applications. For some applica-
tions, if each site independently produces the same con-
tent from different previous versions, the resulting ver-
sion should not be marked identical. We note that, with 
the hash-epoch scheme, this case can happen. In addition, 
the epoch numbering may introduce complicated log 
management overhead, which can make it difficult to 

prune old histories to control unbounded storage. Finally, 
and perhaps most importantly, the hash-epoch scheme 
does not maintain tamper-evident history linking.  

Pastwatch [Yi06] is a version control system that al-
lows pair-wise reconciliation without a central server. 
Pastwatch’s revtrees are similar to B-SHH’s version tree 
structure since the version identifier includes the parent 
versions’ identifier. It assigns two different identifiers to 
the new merged versions that are independently created 
from the same base versions, even when the resulting 
merges are the same (e.g., (AB)C = A(BC)). This may be 
a desirable characteristic for a version control system, 
but, as we discovered with B-SHH, may not be suitable 
for optimistic replication with random anti-entropy. S-
Sync with A-SHH guarantees eventual convergence by 
using continuous random anti-entropy and assigning the 
same version (state) identifier to independent associative 
merges with the same predecessor versions. 

BitKeeper [Bi06] also provides decentralized version 
exchanges among peers.  Its versioning structure is simi-
lar to B-SHH and hence suffers from the same problems.  
Their web site recommends hierarchical reconciliation 
schedule to avoid divergence 

LOCKSS [Ma05p] replicates published articles in 
order to preserve their content, such as if the publisher 
goes out of business. Unlike SHH, it does not use en-
cryption, and it is not concerned with the process by 
which articles are updated or distributed. LOCKSS fo-
cuses on determining whether an article’s contents have 
been corrupted. To check this, replicas periodically run a 
sampled poll to compare their stored contents and vote 
on the correct contents if differences are observed.  S-
Sync and LOCKSS differ in their application semantics 
but share some common motivations.  We believe that 
these two schemes could work together to provide long-
term preservation with update accountability. 

7. Conclusion  
A Summary Hash History (SHH) is a novel, practical 
method for maintaining a secure version tree in systems 
that employ optimistic replication.  The use of collision-
resistant summary hashes as version identifiers provides 
source traceability of updates and an undo/time-travel 
capability in a tamper-evident manner. S-Sync uses the 
SHH data structure to extract the set of incremental up-
dates to be transferred between sites during pair-wise 
reconciliation without using version vectors, freeing it-
self from the version vector maintenance issues. By using 
summary hashes as pointers into change-sets, S-Sync 
does not need to keep operation logs, thereby avoiding 
log merging procedures. 

In retrospect, the effort to build SHH-Visualizer was 
quite worthwhile. SHH-Visualizer discovered that S-
Sync with B-SHH may not be suitable for optimistic rep-
lication with random anti-entropy and motivated our next 
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design: A-SHH. S-Sync with A-SHH not only guarantees 
eventual convergence but also enables the convergence 
of concurrent updates (sometimes across partitioned net-
works) by assigning the same state identifier to inde-
pendent associative merges with the same predecessor 
states. 

Finally, http://isr.uncc.edu/SHH provides S-Sync, 
SHH-Visualizer, and links to the RepliWiki nodes de-
ployed on PlanetLab to demonstrate the usefulness of the 
SHH technique in a real world application.   
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